text
stringlengths 0
3.06M
| meta
stringlengths 57
121
|
---|---|
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
r s : R
xβ y : M
a b : R
h : a + b = 1
x : M
β’ a β’ x + b β’ x = x
[PROOFSTEP]
rw [β add_smul, h, one_smul]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
r s : R
x y : M
β’ 2 β’ x = x + x
[PROOFSTEP]
rw [β one_add_one_eq_two, add_smul, one_smul]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring R
instβΒ³ : AddCommMonoid M
instβΒ² : Module R M
r s : R
xβ y : M
instβΒΉ : AddCommMonoid Mβ
instβ : SMul R Mβ
f : Mβ β+ M
hf : Injective βf
smul : β (c : R) (x : Mβ), βf (c β’ x) = c β’ βf x
srcβ : DistribMulAction R Mβ := Injective.distribMulAction f hf smul
cβ cβ : R
x : Mβ
β’ βf ((cβ + cβ) β’ x) = βf (cβ β’ x + cβ β’ x)
[PROOFSTEP]
simp only [smul, f.map_add, add_smul]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring R
instβΒ³ : AddCommMonoid M
instβΒ² : Module R M
r s : R
xβ y : M
instβΒΉ : AddCommMonoid Mβ
instβ : SMul R Mβ
f : Mβ β+ M
hf : Injective βf
smul : β (c : R) (x : Mβ), βf (c β’ x) = c β’ βf x
srcβ : DistribMulAction R Mβ := Injective.distribMulAction f hf smul
x : Mβ
β’ βf (0 β’ x) = βf 0
[PROOFSTEP]
simp only [smul, zero_smul, f.map_zero]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring R
instβΒ³ : AddCommMonoid M
instβΒ² : Module R M
r s : R
xβ y : M
instβΒΉ : AddCommMonoid Mβ
instβ : SMul R Mβ
f : M β+ Mβ
hf : Surjective βf
smul : β (c : R) (x : M), βf (c β’ x) = c β’ βf x
cβ cβ : R
x : Mβ
β’ (cβ + cβ) β’ x = cβ β’ x + cβ β’ x
[PROOFSTEP]
rcases hf x with β¨x, rflβ©
[GOAL]
case intro
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring R
instβΒ³ : AddCommMonoid M
instβΒ² : Module R M
r s : R
xβ y : M
instβΒΉ : AddCommMonoid Mβ
instβ : SMul R Mβ
f : M β+ Mβ
hf : Surjective βf
smul : β (c : R) (x : M), βf (c β’ x) = c β’ βf x
cβ cβ : R
x : M
β’ (cβ + cβ) β’ βf x = cβ β’ βf x + cβ β’ βf x
[PROOFSTEP]
simp only [add_smul, β smul, β f.map_add]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring R
instβΒ³ : AddCommMonoid M
instβΒ² : Module R M
r s : R
xβ y : M
instβΒΉ : AddCommMonoid Mβ
instβ : SMul R Mβ
f : M β+ Mβ
hf : Surjective βf
smul : β (c : R) (x : M), βf (c β’ x) = c β’ βf x
x : Mβ
β’ 0 β’ x = 0
[PROOFSTEP]
rcases hf x with β¨x, rflβ©
[GOAL]
case intro
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring R
instβΒ³ : AddCommMonoid M
instβΒ² : Module R M
r s : R
xβ y : M
instβΒΉ : AddCommMonoid Mβ
instβ : SMul R Mβ
f : M β+ Mβ
hf : Surjective βf
smul : β (c : R) (x : M), βf (c β’ x) = c β’ βf x
x : M
β’ 0 β’ βf x = 0
[PROOFSTEP]
rw [β f.map_zero, β smul, zero_smul]
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
Mβ : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ· : Semiring Rβ
instββΆ : AddCommMonoid Mβ
instββ΅ : Module Rβ Mβ
r s : Rβ
xβ y : Mβ
R : Type u_9
S : Type u_10
M : Type u_11
instββ΄ : Semiring R
instβΒ³ : AddCommMonoid M
instβΒ² : Module R M
instβΒΉ : Semiring S
instβ : SMul S M
f : R β+* S
hf : Surjective βf
hsmul : β (c : R) (x : M), βf c β’ x = c β’ x
srcβ : DistribMulAction S M := distribMulActionLeft (βf) hf hsmul
a b : R
x : M
β’ (βf a + βf b) β’ x = βf a β’ x + βf b β’ x
[PROOFSTEP]
simp only [β f.map_add, hsmul, add_smul]
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
Mβ : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ· : Semiring Rβ
instββΆ : AddCommMonoid Mβ
instββ΅ : Module Rβ Mβ
r s : Rβ
xβ y : Mβ
R : Type u_9
S : Type u_10
M : Type u_11
instββ΄ : Semiring R
instβΒ³ : AddCommMonoid M
instβΒ² : Module R M
instβΒΉ : Semiring S
instβ : SMul S M
f : R β+* S
hf : Surjective βf
hsmul : β (c : R) (x : M), βf c β’ x = c β’ x
srcβ : DistribMulAction S M := distribMulActionLeft (βf) hf hsmul
x : M
β’ 0 β’ x = 0
[PROOFSTEP]
rw [β f.map_zero, hsmul, zero_smul]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ³ : Semiring R
instβΒ² : AddCommMonoid M
instβΒΉ : Module R M
rβ sβ : R
xβ y : M
instβ : Semiring S
f : S β+* R
srcβΒΉ : MulActionWithZero S M := MulActionWithZero.compHom M (RingHom.toMonoidWithZeroHom f)
srcβ : DistribMulAction S M := DistribMulAction.compHom M βf
r s : S
x : M
β’ βf (r + s) β’ x = βf r β’ x + βf s β’ x
[PROOFSTEP]
simp [add_smul]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
rβ s : R
x y : M
srcβ : R β* AddMonoid.End M := DistribMulAction.toAddMonoidEnd R M
r : M
β’ 0 β’ r = 0
[PROOFSTEP]
simp
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
rβ s : R
xβ yβ : M
srcβ : R β* AddMonoid.End M := DistribMulAction.toAddMonoidEnd R M
x y : R
r : M
β’ (x + y) β’ r = x β’ r + y β’ r
[PROOFSTEP]
simp [add_smul]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
r s : R
x y : M
zero_eq_one : 0 = 1
β’ x = 0
[PROOFSTEP]
rw [β one_smul R x, β zero_eq_one, zero_smul]
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring Rβ
instβΒ³ : AddCommMonoid M
instβΒ² : Module Rβ M
rβ s : Rβ
x y : M
R : Type u_9
instβΒΉ : Ring R
instβ : Module R M
r : R
m : M
β’ r β’ m + (1 - r) β’ m = m
[PROOFSTEP]
rw [β add_smul, add_sub_cancel'_right, one_smul]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommGroup M
instβ : Module R M
x y : M
a b : R
h : a + b = 1
β’ a β’ x + b β’ y = b β’ y - b β’ x + (a β’ x + b β’ x)
[PROOFSTEP]
abel
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommGroup M
instβ : Module R M
x y : M
a b : R
h : a + b = 1
β’ a β’ x + b β’ y = b β’ y - b β’ x + (a β’ x + b β’ x)
[PROOFSTEP]
abel
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommGroup M
instβ : Module R M
x y : M
a b : R
h : a + b = 1
β’ b β’ y - b β’ x + (a β’ x + b β’ x) = b β’ (y - x) + x
[PROOFSTEP]
rw [smul_sub, Convex.combo_self h]
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
S : Type u_4
Mβ : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
R : Type u_9
instβΒΉ : Semiring R
M : Type u_10
instβ : AddCommMonoid M
P Q : Module R M
w : β (r : R) (m : M), r β’ m = r β’ m
β’ P = Q
[PROOFSTEP]
ext
[GOAL]
case smul.h.h
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
S : Type u_4
Mβ : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
R : Type u_9
instβΒΉ : Semiring R
M : Type u_10
instβ : AddCommMonoid M
P Q : Module R M
w : β (r : R) (m : M), r β’ m = r β’ m
xβΒΉ : R
xβ : M
β’ SMul.smul xβΒΉ xβ = SMul.smul xβΒΉ xβ
[PROOFSTEP]
exact w _ _
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Ring R
instβΒΉ : AddCommGroup M
instβ : Module R M
r s : R
x y : M
β’ -r β’ x + r β’ x = 0
[PROOFSTEP]
rw [β add_smul, add_left_neg, zero_smul]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Ring R
instβΒΉ : AddCommGroup M
instβ : Module R M
r s : R
x y : M
β’ -r β’ -x = r β’ x
[PROOFSTEP]
rw [neg_smul, smul_neg, neg_neg]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Ring R
instβΒΉ : AddCommGroup M
instβ : Module R M
r s : R
xβ y : M
u : RΛ£
x : M
β’ -u β’ x = -(u β’ x)
[PROOFSTEP]
rw [Units.smul_def, Units.val_neg, _root_.neg_smul, Units.smul_def]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Ring R
instβΒΉ : AddCommGroup M
instβ : Module R M
r s : R
xβ y x : M
β’ -1 β’ x = -x
[PROOFSTEP]
simp
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Ring R
instβΒΉ : AddCommGroup M
instβ : Module R M
rβ sβ : R
x yβ : M
r s : R
y : M
β’ (r - s) β’ y = r β’ y - s β’ y
[PROOFSTEP]
simp [add_smul, sub_eq_add_neg]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Ring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
srcβ : AddCommMonoid M := inferInstance
a : M
β’ (fun z a => βz β’ a) 0 a = 0
[PROOFSTEP]
simpa only [Int.cast_zero] using zero_smul R a
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Ring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
srcβ : AddCommMonoid M := inferInstance
z : β
a : M
β’ (fun z a => βz β’ a) (Int.ofNat (Nat.succ z)) a = a + (fun z a => βz β’ a) (Int.ofNat z) a
[PROOFSTEP]
simp [add_comm, add_smul]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Ring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
srcβ : AddCommMonoid M := inferInstance
z : β
a : M
β’ (fun z a => βz β’ a) (Int.negSucc z) a = -(fun z a => βz β’ a) (β(Nat.succ z)) a
[PROOFSTEP]
simp [β smul_assoc, neg_one_smul]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Ring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
srcβ : AddCommMonoid M := inferInstance
a : M
β’ -1 β’ a + a = 0
[PROOFSTEP]
nth_rw 2 [β one_smul R a]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Ring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
srcβ : AddCommMonoid M := inferInstance
a : M
β’ -1 β’ a + 1 β’ a = 0
[PROOFSTEP]
rw [β add_smul, add_left_neg, zero_smul]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
n : β
b : M
β’ n β’ b = βn β’ b
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
b : M
β’ Nat.zero β’ b = βNat.zero β’ b
[PROOFSTEP]
rw [Nat.zero_eq, Nat.cast_zero, zero_smul, zero_smul]
[GOAL]
case succ
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
b : M
n : β
ih : n β’ b = βn β’ b
β’ Nat.succ n β’ b = β(Nat.succ n) β’ b
[PROOFSTEP]
rw [Nat.succ_eq_add_one, Nat.cast_succ, add_smul, add_smul, one_smul, ih, one_smul]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
h : Module β M
n : β
x : M
β’ SMul.smul n x = n β’ x
[PROOFSTEP]
rw [nsmul_eq_smul_cast β n x, Nat.cast_id]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
h : Module β M
n : β
x : M
β’ SMul.smul n x = n β’ x
[PROOFSTEP]
rfl
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
β’ Module β M
[PROOFSTEP]
infer_instance
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
P : Module β M
n : β
β’ β (m : M), n β’ m = n β’ m
[PROOFSTEP]
convert nat_smul_eq_nsmul P n
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
n : β
x : R
y : M
β’ (Nat.zero β’ x) β’ y = Nat.zero β’ x β’ y
[PROOFSTEP]
simp only [Nat.zero_eq, zero_smul]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ² : Semiring R
instβΒΉ : AddCommMonoid M
instβ : Module R M
nβ : β
x : R
y : M
n : β
ih : (n β’ x) β’ y = n β’ x β’ y
β’ (Nat.succ n β’ x) β’ y = Nat.succ n β’ x β’ y
[PROOFSTEP]
simp only [Nat.succ_eq_add_one, add_smul, one_smul, ih]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring S
instβΒ³ : Ring R
instβΒ² : AddCommGroup M
instβΒΉ : Module S M
instβ : Module R M
n : β€
b : M
β’ β(AddMonoidHom.flip (smulAddHom β€ M)) b =
AddMonoidHom.comp (β(AddMonoidHom.flip (smulAddHom R M)) b) (Int.castAddHom R)
[PROOFSTEP]
apply AddMonoidHom.ext_int
[GOAL]
case h1
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring S
instβΒ³ : Ring R
instβΒ² : AddCommGroup M
instβΒΉ : Module S M
instβ : Module R M
n : β€
b : M
β’ β(β(AddMonoidHom.flip (smulAddHom β€ M)) b) 1 =
β(AddMonoidHom.comp (β(AddMonoidHom.flip (smulAddHom R M)) b) (Int.castAddHom R)) 1
[PROOFSTEP]
simp
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring S
instβΒ³ : Ring R
instβΒ² : AddCommGroup M
instβΒΉ : Module S M
instβ : Module R M
h : Module β€ M
n : β€
x : M
β’ SMul.smul n x = n β’ x
[PROOFSTEP]
rw [zsmul_eq_smul_cast β€ n x, Int.cast_id]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring S
instβΒ³ : Ring R
instβΒ² : AddCommGroup M
instβΒΉ : Module S M
instβ : Module R M
h : Module β€ M
n : β€
x : M
β’ SMul.smul n x = n β’ x
[PROOFSTEP]
rfl
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring S
instβΒ³ : Ring R
instβΒ² : AddCommGroup M
instβΒΉ : Module S M
instβ : Module R M
β’ Module β€ M
[PROOFSTEP]
infer_instance
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring S
instβΒ³ : Ring R
instβΒ² : AddCommGroup M
instβΒΉ : Module S M
instβ : Module R M
P : Module β€ M
n : β€
β’ β (m : M), n β’ m = n β’ m
[PROOFSTEP]
convert int_smul_eq_zsmul P n
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommGroup M
instββ΅ : AddCommGroup Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : Ring R
instβΒ² : Ring S
instβΒΉ : Module R M
instβ : Module S Mβ
x : β€
a : M
β’ βf (βx β’ a) = βx β’ βf a
[PROOFSTEP]
simp only [β zsmul_eq_smul_cast, map_zsmul]
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : Semiring R
instβΒ² : Semiring S
instβΒΉ : Module R M
instβ : Module S Mβ
x : β
a : M
β’ βf (βx β’ a) = βx β’ βf a
[PROOFSTEP]
simp only [β nsmul_eq_smul_cast, AddMonoidHom.map_nsmul, map_nsmul]
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
x : M
β’ βf ((βn)β»ΒΉ β’ x) = (βn)β»ΒΉ β’ βf x
[PROOFSTEP]
by_cases hR : (n : R) = 0
[GOAL]
case pos
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
x : M
hR : βn = 0
β’ βf ((βn)β»ΒΉ β’ x) = (βn)β»ΒΉ β’ βf x
[PROOFSTEP]
by_cases hS : (n : S) = 0
[GOAL]
case neg
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
x : M
hR : Β¬βn = 0
β’ βf ((βn)β»ΒΉ β’ x) = (βn)β»ΒΉ β’ βf x
[PROOFSTEP]
by_cases hS : (n : S) = 0
[GOAL]
case pos
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
x : M
hR : βn = 0
hS : βn = 0
β’ βf ((βn)β»ΒΉ β’ x) = (βn)β»ΒΉ β’ βf x
[PROOFSTEP]
simp [hR, hS, map_zero f]
[GOAL]
case neg
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
x : M
hR : βn = 0
hS : Β¬βn = 0
β’ βf ((βn)β»ΒΉ β’ x) = (βn)β»ΒΉ β’ βf x
[PROOFSTEP]
suffices β y, f y = 0 by rw [this, this, smul_zero]
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
x : M
hR : βn = 0
hS : Β¬βn = 0
this : β (y : M), βf y = 0
β’ βf ((βn)β»ΒΉ β’ x) = (βn)β»ΒΉ β’ βf x
[PROOFSTEP]
rw [this, this, smul_zero]
[GOAL]
case neg
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
x : M
hR : βn = 0
hS : Β¬βn = 0
β’ β (y : M), βf y = 0
[PROOFSTEP]
clear x
[GOAL]
case neg
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
hR : βn = 0
hS : Β¬βn = 0
β’ β (y : M), βf y = 0
[PROOFSTEP]
intro x
[GOAL]
case neg
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
hR : βn = 0
hS : Β¬βn = 0
x : M
β’ βf x = 0
[PROOFSTEP]
rw [β inv_smul_smulβ hS (f x), β map_nat_cast_smul f R S]
[GOAL]
case neg
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
hR : βn = 0
hS : Β¬βn = 0
x : M
β’ (βn)β»ΒΉ β’ βf (βn β’ x) = 0
[PROOFSTEP]
simp [hR, map_zero f]
[GOAL]
case pos
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
x : M
hR : Β¬βn = 0
hS : βn = 0
β’ βf ((βn)β»ΒΉ β’ x) = (βn)β»ΒΉ β’ βf x
[PROOFSTEP]
suffices β y, f y = 0 by simp [this]
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
x : M
hR : Β¬βn = 0
hS : βn = 0
this : β (y : M), βf y = 0
β’ βf ((βn)β»ΒΉ β’ x) = (βn)β»ΒΉ β’ βf x
[PROOFSTEP]
simp [this]
[GOAL]
case pos
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
x : M
hR : Β¬βn = 0
hS : βn = 0
β’ β (y : M), βf y = 0
[PROOFSTEP]
clear x
[GOAL]
case pos
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
hR : Β¬βn = 0
hS : βn = 0
β’ β (y : M), βf y = 0
[PROOFSTEP]
intro x
[GOAL]
case pos
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
hR : Β¬βn = 0
hS : βn = 0
x : M
β’ βf x = 0
[PROOFSTEP]
rw [β smul_inv_smulβ hR x, map_nat_cast_smul f R S, hS, zero_smul]
[GOAL]
case neg
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommMonoid M
instββ΅ : AddCommMonoid Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionSemiring R
instβΒ² : DivisionSemiring S
instβΒΉ : Module R M
instβ : Module S Mβ
n : β
x : M
hR : Β¬βn = 0
hS : Β¬βn = 0
β’ βf ((βn)β»ΒΉ β’ x) = (βn)β»ΒΉ β’ βf x
[PROOFSTEP]
rw [β inv_smul_smulβ hS (f _), β map_nat_cast_smul f R S, smul_inv_smulβ hR]
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommGroup M
instββ΅ : AddCommGroup Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionRing R
instβΒ² : DivisionRing S
instβΒΉ : Module R M
instβ : Module S Mβ
z : β€
x : M
β’ βf ((βz)β»ΒΉ β’ x) = (βz)β»ΒΉ β’ βf x
[PROOFSTEP]
obtain β¨n, rfl | rflβ© := z.eq_nat_or_neg
[GOAL]
case intro.inl
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommGroup M
instββ΅ : AddCommGroup Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionRing R
instβΒ² : DivisionRing S
instβΒΉ : Module R M
instβ : Module S Mβ
x : M
n : β
β’ βf ((ββn)β»ΒΉ β’ x) = (ββn)β»ΒΉ β’ βf x
[PROOFSTEP]
rw [Int.cast_Nat_cast, Int.cast_Nat_cast, map_inv_nat_cast_smul _ R S]
[GOAL]
case intro.inr
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommGroup M
instββ΅ : AddCommGroup Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionRing R
instβΒ² : DivisionRing S
instβΒΉ : Module R M
instβ : Module S Mβ
x : M
n : β
β’ βf ((β(-βn))β»ΒΉ β’ x) = (β(-βn))β»ΒΉ β’ βf x
[PROOFSTEP]
simp_rw [Int.cast_neg, Int.cast_Nat_cast, inv_neg, neg_smul, map_neg, map_inv_nat_cast_smul _ R S]
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
Sβ : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββΆ : AddCommGroup M
instββ΅ : AddCommGroup Mβ
F : Type u_9
instββ΄ : AddMonoidHomClass F M Mβ
f : F
R : Type u_10
S : Type u_11
instβΒ³ : DivisionRing R
instβΒ² : DivisionRing S
instβΒΉ : Module R M
instβ : Module S Mβ
c : β
x : M
β’ βf (βc β’ x) = βc β’ βf x
[PROOFSTEP]
rw [Rat.cast_def, Rat.cast_def, div_eq_mul_inv, div_eq_mul_inv, mul_smul, mul_smul, map_int_cast_smul f R S,
map_inv_nat_cast_smul f R S]
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
S : Type u_4
Mβ : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
R : Type u_9
M : Type u_10
N : Type u_11
instββ΅ : Zero R
instββ΄ : Zero M
instβΒ³ : Zero N
instβΒ² : SMul R M
instβΒΉ : SMul R N
instβ : NoZeroSMulDivisors R N
f : M β N
hf : Injective f
h0 : f 0 = 0
hs : β (c : R) (x : M), f (c β’ x) = c β’ f x
xβΒΉ : R
xβ : M
h : xβΒΉ β’ xβ = 0
β’ xβΒΉ β’ f xβ = 0
[PROOFSTEP]
rw [β hs, h, h0]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒ³ : Zero R
instβΒ² : Zero M
instβΒΉ : SMulWithZero R M
instβ : NoZeroSMulDivisors R M
c : R
x : M
β’ c β’ x β 0 β c β 0 β§ x β 0
[PROOFSTEP]
rw [Ne.def, smul_eq_zero, not_or]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring R
instβΒ³ : AddCommMonoid M
instβΒ² : Module R M
instβΒΉ : NoZeroSMulDivisors R M
instβ : CharZero R
β’ β {c : β} {x : M}, c β’ x = 0 β c = 0 β¨ x = 0
[PROOFSTEP]
intro c x
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring R
instβΒ³ : AddCommMonoid M
instβΒ² : Module R M
instβΒΉ : NoZeroSMulDivisors R M
instβ : CharZero R
c : β
x : M
β’ c β’ x = 0 β c = 0 β¨ x = 0
[PROOFSTEP]
rw [nsmul_eq_smul_cast R, smul_eq_zero]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring R
instβΒ³ : AddCommMonoid M
instβΒ² : Module R M
instβΒΉ : NoZeroSMulDivisors R M
instβ : CharZero R
c : β
x : M
β’ βc = 0 β¨ x = 0 β c = 0 β¨ x = 0
[PROOFSTEP]
simp
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring R
instβΒ³ : AddCommMonoid M
instβΒ² : Module R M
instβΒΉ : NoZeroSMulDivisors R M
instβ : CharZero R
v : M
β’ 2 β’ v = 0 β v = 0
[PROOFSTEP]
haveI := Nat.noZeroSMulDivisors R M
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring R
instβΒ³ : AddCommMonoid M
instβΒ² : Module R M
instβΒΉ : NoZeroSMulDivisors R M
instβ : CharZero R
v : M
this : NoZeroSMulDivisors β M
β’ 2 β’ v = 0 β v = 0
[PROOFSTEP]
simp [smul_eq_zero]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
Mβ : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΅ : Semiring R
instββ΄ : AddCommMonoid Mβ
instβΒ³ : Module R Mβ
M : Type u_9
instβΒ² : AddCommMonoidWithOne M
instβΒΉ : CharZero M
instβ : Module R M
β’ CharZero R
[PROOFSTEP]
refine' β¨fun m n h => @Nat.cast_injective M _ _ _ _ _β©
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
Mβ : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΅ : Semiring R
instββ΄ : AddCommMonoid Mβ
instβΒ³ : Module R Mβ
M : Type u_9
instβΒ² : AddCommMonoidWithOne M
instβΒΉ : CharZero M
instβ : Module R M
m n : β
h : βm = βn
β’ βm = βn
[PROOFSTEP]
rw [β nsmul_one, β nsmul_one, nsmul_eq_smul_cast R m (1 : M), nsmul_eq_smul_cast R n (1 : M), h]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring R
instβΒ³ : AddCommGroup M
instβΒ² : Module R M
instβΒΉ : NoZeroSMulDivisors R M
instβ : CharZero R
v : M
β’ v = -v β v = 0
[PROOFSTEP]
rw [β two_nsmul_eq_zero R M, two_smul, add_eq_zero_iff_eq_neg]
[GOAL]
Ξ± : Type u_1
R : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instββ΄ : Semiring R
instβΒ³ : AddCommGroup M
instβΒ² : Module R M
instβΒΉ : NoZeroSMulDivisors R M
instβ : CharZero R
v : M
β’ -v = v β v = 0
[PROOFSTEP]
rw [eq_comm, self_eq_neg R M]
[GOAL]
Ξ± : Type u_1
R : Type u_2
kβ : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
instβΒΉ : AddCommGroup M
instβ : Module β M
k : β€
x : M
h : k β’ x = 0
β’ k = 0 β¨ x = 0
[PROOFSTEP]
simpa only [zsmul_eq_smul_cast β k x, smul_eq_zero, Rat.zero_iff_num_zero] using h
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
R : Type u_9
instβ : Semiring R
m : β
β’ m β’ 1 = βm
[PROOFSTEP]
rw [nsmul_eq_mul, mul_one]
[GOAL]
Ξ± : Type u_1
Rβ : Type u_2
k : Type u_3
S : Type u_4
M : Type u_5
Mβ : Type u_6
Mβ : Type u_7
ΞΉ : Type u_8
R : Type u_9
instβ : Ring R
m : β€
β’ m β’ 1 = βm
[PROOFSTEP]
rw [zsmul_eq_mul, mul_one]
| {"mathlib_filename": "Mathlib.Algebra.Module.Basic", "llama_tokens": 16226} |
[GOAL]
x : PGame
β’ Numeric x β
(β (i : LeftMoves x) (j : RightMoves x), moveLeft x i < moveRight x j) β§
(β (i : LeftMoves x), Numeric (moveLeft x i)) β§ β (j : RightMoves x), Numeric (moveRight x j)
[PROOFSTEP]
cases x
[GOAL]
case mk
Ξ±β Ξ²β : Type u_1
aβΒΉ : Ξ±β β PGame
aβ : Ξ²β β PGame
β’ Numeric (mk Ξ±β Ξ²β aβΒΉ aβ) β
(β (i : LeftMoves (mk Ξ±β Ξ²β aβΒΉ aβ)) (j : RightMoves (mk Ξ±β Ξ²β aβΒΉ aβ)),
moveLeft (mk Ξ±β Ξ²β aβΒΉ aβ) i < moveRight (mk Ξ±β Ξ²β aβΒΉ aβ) j) β§
(β (i : LeftMoves (mk Ξ±β Ξ²β aβΒΉ aβ)), Numeric (moveLeft (mk Ξ±β Ξ²β aβΒΉ aβ) i)) β§
β (j : RightMoves (mk Ξ±β Ξ²β aβΒΉ aβ)), Numeric (moveRight (mk Ξ±β Ξ²β aβΒΉ aβ) j)
[PROOFSTEP]
rfl
[GOAL]
x : PGame
o : Numeric x
i : LeftMoves x
j : RightMoves x
β’ moveLeft x i < moveRight x j
[PROOFSTEP]
cases x
[GOAL]
case mk
Ξ±β Ξ²β : Type u_1
aβΒΉ : Ξ±β β PGame
aβ : Ξ²β β PGame
o : Numeric (PGame.mk Ξ±β Ξ²β aβΒΉ aβ)
i : LeftMoves (PGame.mk Ξ±β Ξ²β aβΒΉ aβ)
j : RightMoves (PGame.mk Ξ±β Ξ²β aβΒΉ aβ)
β’ moveLeft (PGame.mk Ξ±β Ξ²β aβΒΉ aβ) i < moveRight (PGame.mk Ξ±β Ξ²β aβΒΉ aβ) j
[PROOFSTEP]
exact o.1 i j
[GOAL]
x : PGame
o : Numeric x
i : LeftMoves x
β’ Numeric (PGame.moveLeft x i)
[PROOFSTEP]
cases x
[GOAL]
case mk
Ξ±β Ξ²β : Type u_1
aβΒΉ : Ξ±β β PGame
aβ : Ξ²β β PGame
o : Numeric (PGame.mk Ξ±β Ξ²β aβΒΉ aβ)
i : LeftMoves (PGame.mk Ξ±β Ξ²β aβΒΉ aβ)
β’ Numeric (PGame.moveLeft (PGame.mk Ξ±β Ξ²β aβΒΉ aβ) i)
[PROOFSTEP]
exact o.2.1 i
[GOAL]
x : PGame
o : Numeric x
j : RightMoves x
β’ Numeric (PGame.moveRight x j)
[PROOFSTEP]
cases x
[GOAL]
case mk
Ξ±β Ξ²β : Type u_1
aβΒΉ : Ξ±β β PGame
aβ : Ξ²β β PGame
o : Numeric (PGame.mk Ξ±β Ξ²β aβΒΉ aβ)
j : RightMoves (PGame.mk Ξ±β Ξ²β aβΒΉ aβ)
β’ Numeric (PGame.moveRight (PGame.mk Ξ±β Ξ²β aβΒΉ aβ) j)
[PROOFSTEP]
exact o.2.2 j
[GOAL]
x y : PGame
r : x β‘r y
ox : Numeric x
β’ Numeric y
[PROOFSTEP]
induction' x using PGame.moveRecOn with x IHl IHr generalizing y
[GOAL]
case IH
xβ yβ : PGame
rβ : xβ β‘r yβ
oxβ : Numeric xβ
x : PGame
IHl : β (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i β‘r y β Numeric (PGame.moveLeft x i) β Numeric y
IHr : β (j : RightMoves x) {y : PGame}, PGame.moveRight x j β‘r y β Numeric (PGame.moveRight x j) β Numeric y
y : PGame
r : x β‘r y
ox : Numeric x
β’ Numeric y
[PROOFSTEP]
apply Numeric.mk (fun i j => ?_) (fun i => ?_) fun j => ?_
[GOAL]
xβ yβ : PGame
rβ : xβ β‘r yβ
oxβ : Numeric xβ
x : PGame
IHl : β (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i β‘r y β Numeric (PGame.moveLeft x i) β Numeric y
IHr : β (j : RightMoves x) {y : PGame}, PGame.moveRight x j β‘r y β Numeric (PGame.moveRight x j) β Numeric y
y : PGame
r : x β‘r y
ox : Numeric x
i : LeftMoves y
j : RightMoves y
β’ PGame.moveLeft y i < PGame.moveRight y j
[PROOFSTEP]
rw [β lt_congr (r.moveLeftSymm i).equiv (r.moveRightSymm j).equiv]
[GOAL]
xβ yβ : PGame
rβ : xβ β‘r yβ
oxβ : Numeric xβ
x : PGame
IHl : β (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i β‘r y β Numeric (PGame.moveLeft x i) β Numeric y
IHr : β (j : RightMoves x) {y : PGame}, PGame.moveRight x j β‘r y β Numeric (PGame.moveRight x j) β Numeric y
y : PGame
r : x β‘r y
ox : Numeric x
i : LeftMoves y
j : RightMoves y
β’ PGame.moveLeft x (β(leftMovesEquiv r).symm i) < PGame.moveRight x (β(rightMovesEquiv r).symm j)
[PROOFSTEP]
apply ox.left_lt_right
[GOAL]
xβ yβ : PGame
rβ : xβ β‘r yβ
oxβ : Numeric xβ
x : PGame
IHl : β (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i β‘r y β Numeric (PGame.moveLeft x i) β Numeric y
IHr : β (j : RightMoves x) {y : PGame}, PGame.moveRight x j β‘r y β Numeric (PGame.moveRight x j) β Numeric y
y : PGame
r : x β‘r y
ox : Numeric x
i : LeftMoves y
β’ Numeric (PGame.moveLeft y i)
[PROOFSTEP]
exact IHl _ (r.moveLeftSymm i) (ox.moveLeft _)
[GOAL]
xβ yβ : PGame
rβ : xβ β‘r yβ
oxβ : Numeric xβ
x : PGame
IHl : β (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i β‘r y β Numeric (PGame.moveLeft x i) β Numeric y
IHr : β (j : RightMoves x) {y : PGame}, PGame.moveRight x j β‘r y β Numeric (PGame.moveRight x j) β Numeric y
y : PGame
r : x β‘r y
ox : Numeric x
j : RightMoves y
β’ Numeric (PGame.moveRight y j)
[PROOFSTEP]
exact IHr _ (r.moveRightSymm j) (ox.moveRight _)
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
β’ x β§ y β Β¬y β§ x
[PROOFSTEP]
refine'
numeric_rec (C := fun x => β z (_oz : Numeric z), x β§ z β Β¬z β§ x) (fun xl xr xL xR hx _oxl _oxr IHxl IHxr => _) x ox y
oy
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
hx : β (i : xl) (j : xr), xL i < xR j
_oxl : β (i : xl), Numeric (xL i)
_oxr : β (i : xr), Numeric (xR i)
IHxl : β (i : xl), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xL i)
IHxr : β (i : xr), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xR i)
β’ (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (mk xl xr xL xR)
[PROOFSTEP]
refine' numeric_rec fun yl yr yL yR hy oyl oyr _IHyl _IHyr => _
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
hx : β (i : xl) (j : xr), xL i < xR j
_oxl : β (i : xl), Numeric (xL i)
_oxr : β (i : xr), Numeric (xR i)
IHxl : β (i : xl), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xL i)
IHxr : β (i : xr), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xR i)
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
hy : β (i : yl) (j : yr), yL i < yR j
oyl : β (i : yl), Numeric (yL i)
oyr : β (i : yr), Numeric (yR i)
_IHyl : β (i : yl), mk xl xr xL xR β§ yL i β Β¬yL i β§ mk xl xr xL xR
_IHyr : β (i : yr), mk xl xr xL xR β§ yR i β Β¬yR i β§ mk xl xr xL xR
β’ mk xl xr xL xR β§ mk yl yr yL yR β Β¬mk yl yr yL yR β§ mk xl xr xL xR
[PROOFSTEP]
rw [mk_lf_mk, mk_lf_mk]
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
hx : β (i : xl) (j : xr), xL i < xR j
_oxl : β (i : xl), Numeric (xL i)
_oxr : β (i : xr), Numeric (xR i)
IHxl : β (i : xl), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xL i)
IHxr : β (i : xr), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xR i)
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
hy : β (i : yl) (j : yr), yL i < yR j
oyl : β (i : yl), Numeric (yL i)
oyr : β (i : yr), Numeric (yR i)
_IHyl : β (i : yl), mk xl xr xL xR β§ yL i β Β¬yL i β§ mk xl xr xL xR
_IHyr : β (i : yr), mk xl xr xL xR β§ yR i β Β¬yR i β§ mk xl xr xL xR
β’ ((β i, mk xl xr xL xR β€ yL i) β¨ β j, xR j β€ mk yl yr yL yR) β
Β¬((β i, mk yl yr yL yR β€ xL i) β¨ β j, yR j β€ mk xl xr xL xR)
[PROOFSTEP]
rintro (β¨i, hββ© | β¨j, hββ©) (β¨i, hββ© | β¨j, hββ©)
[GOAL]
case inl.intro.inl.intro
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
hx : β (i : xl) (j : xr), xL i < xR j
_oxl : β (i : xl), Numeric (xL i)
_oxr : β (i : xr), Numeric (xR i)
IHxl : β (i : xl), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xL i)
IHxr : β (i : xr), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xR i)
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
hy : β (i : yl) (j : yr), yL i < yR j
oyl : β (i : yl), Numeric (yL i)
oyr : β (i : yr), Numeric (yR i)
_IHyl : β (i : yl), mk xl xr xL xR β§ yL i β Β¬yL i β§ mk xl xr xL xR
_IHyr : β (i : yr), mk xl xr xL xR β§ yR i β Β¬yR i β§ mk xl xr xL xR
iβ : yl
hβ : mk xl xr xL xR β€ yL iβ
i : xl
hβ : mk yl yr yL yR β€ xL i
β’ False
[PROOFSTEP]
exact IHxl _ _ (oyl _) (hβ.moveLeft_lf _) (hβ.moveLeft_lf _)
[GOAL]
case inl.intro.inr.intro
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
hx : β (i : xl) (j : xr), xL i < xR j
_oxl : β (i : xl), Numeric (xL i)
_oxr : β (i : xr), Numeric (xR i)
IHxl : β (i : xl), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xL i)
IHxr : β (i : xr), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xR i)
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
hy : β (i : yl) (j : yr), yL i < yR j
oyl : β (i : yl), Numeric (yL i)
oyr : β (i : yr), Numeric (yR i)
_IHyl : β (i : yl), mk xl xr xL xR β§ yL i β Β¬yL i β§ mk xl xr xL xR
_IHyr : β (i : yr), mk xl xr xL xR β§ yR i β Β¬yR i β§ mk xl xr xL xR
i : yl
hβ : mk xl xr xL xR β€ yL i
j : yr
hβ : yR j β€ mk xl xr xL xR
β’ False
[PROOFSTEP]
exact (le_trans hβ hβ).not_gf (lf_of_lt (hy _ _))
[GOAL]
case inr.intro.inl.intro
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
hx : β (i : xl) (j : xr), xL i < xR j
_oxl : β (i : xl), Numeric (xL i)
_oxr : β (i : xr), Numeric (xR i)
IHxl : β (i : xl), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xL i)
IHxr : β (i : xr), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xR i)
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
hy : β (i : yl) (j : yr), yL i < yR j
oyl : β (i : yl), Numeric (yL i)
oyr : β (i : yr), Numeric (yR i)
_IHyl : β (i : yl), mk xl xr xL xR β§ yL i β Β¬yL i β§ mk xl xr xL xR
_IHyr : β (i : yr), mk xl xr xL xR β§ yR i β Β¬yR i β§ mk xl xr xL xR
j : xr
hβ : xR j β€ mk yl yr yL yR
i : xl
hβ : mk yl yr yL yR β€ xL i
β’ False
[PROOFSTEP]
exact (le_trans hβ hβ).not_gf (lf_of_lt (hx _ _))
[GOAL]
case inr.intro.inr.intro
x y : PGame
ox : Numeric x
oy : Numeric y
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
hx : β (i : xl) (j : xr), xL i < xR j
_oxl : β (i : xl), Numeric (xL i)
_oxr : β (i : xr), Numeric (xR i)
IHxl : β (i : xl), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xL i)
IHxr : β (i : xr), (fun x => β (z : PGame), Numeric z β x β§ z β Β¬z β§ x) (xR i)
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
hy : β (i : yl) (j : yr), yL i < yR j
oyl : β (i : yl), Numeric (yL i)
oyr : β (i : yr), Numeric (yR i)
_IHyl : β (i : yl), mk xl xr xL xR β§ yL i β Β¬yL i β§ mk xl xr xL xR
_IHyr : β (i : yr), mk xl xr xL xR β§ yR i β Β¬yR i β§ mk xl xr xL xR
jβ : xr
hβ : xR jβ β€ mk yl yr yL yR
j : yr
hβ : yR j β€ mk xl xr xL xR
β’ False
[PROOFSTEP]
exact IHxr _ _ (oyr _) (hβ.lf_moveRight _) (hβ.lf_moveRight _)
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
β’ x β€ y β (β (i : LeftMoves x), moveLeft x i < y) β§ β (j : RightMoves y), x < moveRight y j
[PROOFSTEP]
refine' le_iff_forall_lf.trans (and_congr _ _)
[GOAL]
case refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
β’ (β (i : LeftMoves x), moveLeft x i β§ y) β β (i : LeftMoves x), moveLeft x i < y
[PROOFSTEP]
refine' forall_congr' fun i => lf_iff_lt _ _
[GOAL]
case refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
β’ (β (j : RightMoves y), x β§ moveRight y j) β β (j : RightMoves y), x < moveRight y j
[PROOFSTEP]
refine' forall_congr' fun i => lf_iff_lt _ _
[GOAL]
case refine'_1.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
i : LeftMoves x
β’ Numeric (moveLeft x i)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_1.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
i : LeftMoves x
β’ Numeric y
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_2.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
i : RightMoves y
β’ Numeric x
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_2.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
i : RightMoves y
β’ Numeric (moveRight y i)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
β’ x < y β (β i, x β€ moveLeft y i) β¨ β j, moveRight x j β€ y
[PROOFSTEP]
rw [β lf_iff_lt ox oy, lf_iff_exists_le]
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
β’ x < y β
(β i,
(β (i' : LeftMoves x), moveLeft x i' < moveLeft y i) β§
β (j : RightMoves (moveLeft y i)), x < moveRight (moveLeft y i) j) β¨
β j,
(β (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i < y) β§
β (j' : RightMoves y), moveRight x j < moveRight y j'
[PROOFSTEP]
rw [β lf_iff_lt ox oy, lf_def]
[GOAL]
x y : PGame
ox : Numeric x
oy : Numeric y
β’ ((β i,
(β (i' : LeftMoves x), moveLeft x i' β§ moveLeft y i) β§
β (j : RightMoves (moveLeft y i)), x β§ moveRight (moveLeft y i) j) β¨
β j,
(β (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i β§ y) β§
β (j' : RightMoves y), moveRight x j β§ moveRight y j') β
(β i,
(β (i' : LeftMoves x), moveLeft x i' < moveLeft y i) β§
β (j : RightMoves (moveLeft y i)), x < moveRight (moveLeft y i) j) β¨
β j,
(β (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i < y) β§
β (j' : RightMoves y), moveRight x j < moveRight y j'
[PROOFSTEP]
refine' or_congr _ _
[GOAL]
case refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
β’ (β i,
(β (i' : LeftMoves x), moveLeft x i' β§ moveLeft y i) β§
β (j : RightMoves (moveLeft y i)), x β§ moveRight (moveLeft y i) j) β
β i,
(β (i' : LeftMoves x), moveLeft x i' < moveLeft y i) β§
β (j : RightMoves (moveLeft y i)), x < moveRight (moveLeft y i) j
[PROOFSTEP]
refine' exists_congr fun x_1 => _
[GOAL]
case refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
β’ (β j,
(β (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i β§ y) β§
β (j' : RightMoves y), moveRight x j β§ moveRight y j') β
β j,
(β (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i < y) β§
β (j' : RightMoves y), moveRight x j < moveRight y j'
[PROOFSTEP]
refine' exists_congr fun x_1 => _
[GOAL]
case refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
β’ ((β (i' : LeftMoves x), moveLeft x i' β§ moveLeft y x_1) β§
β (j : RightMoves (moveLeft y x_1)), x β§ moveRight (moveLeft y x_1) j) β
(β (i' : LeftMoves x), moveLeft x i' < moveLeft y x_1) β§
β (j : RightMoves (moveLeft y x_1)), x < moveRight (moveLeft y x_1) j
[PROOFSTEP]
refine' and_congr _ _
[GOAL]
case refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
β’ ((β (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i β§ y) β§
β (j' : RightMoves y), moveRight x x_1 β§ moveRight y j') β
(β (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i < y) β§
β (j' : RightMoves y), moveRight x x_1 < moveRight y j'
[PROOFSTEP]
refine' and_congr _ _
[GOAL]
case refine'_1.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
β’ (β (i' : LeftMoves x), moveLeft x i' β§ moveLeft y x_1) β β (i' : LeftMoves x), moveLeft x i' < moveLeft y x_1
[PROOFSTEP]
refine' forall_congr' fun i => lf_iff_lt _ _
[GOAL]
case refine'_1.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
β’ (β (j : RightMoves (moveLeft y x_1)), x β§ moveRight (moveLeft y x_1) j) β
β (j : RightMoves (moveLeft y x_1)), x < moveRight (moveLeft y x_1) j
[PROOFSTEP]
refine' forall_congr' fun i => lf_iff_lt _ _
[GOAL]
case refine'_2.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
β’ (β (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i β§ y) β
β (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i < y
[PROOFSTEP]
refine' forall_congr' fun i => lf_iff_lt _ _
[GOAL]
case refine'_2.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
β’ (β (j' : RightMoves y), moveRight x x_1 β§ moveRight y j') β β (j' : RightMoves y), moveRight x x_1 < moveRight y j'
[PROOFSTEP]
refine' forall_congr' fun i => lf_iff_lt _ _
[GOAL]
case refine'_1.refine'_1.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
i : LeftMoves x
β’ Numeric (moveLeft x i)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_1.refine'_1.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
i : LeftMoves x
β’ Numeric (moveLeft y x_1)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_1.refine'_2.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
i : RightMoves (moveLeft y x_1)
β’ Numeric x
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_1.refine'_2.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : LeftMoves y
i : RightMoves (moveLeft y x_1)
β’ Numeric (moveRight (moveLeft y x_1) i)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_2.refine'_1.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
i : LeftMoves (moveRight x x_1)
β’ Numeric (moveLeft (moveRight x x_1) i)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_2.refine'_1.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
i : LeftMoves (moveRight x x_1)
β’ Numeric y
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_2.refine'_2.refine'_1
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
i : RightMoves y
β’ Numeric (moveRight x x_1)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
case refine'_2.refine'_2.refine'_2
x y : PGame
ox : Numeric x
oy : Numeric y
x_1 : RightMoves x
i : RightMoves y
β’ Numeric (moveRight y i)
[PROOFSTEP]
apply_rules [Numeric.moveLeft, Numeric.moveRight]
[GOAL]
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
β’ β (i : xl β yl) (j : xr β yr),
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
i <
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
j
[PROOFSTEP]
rintro (ix | iy) (jx | jy)
[GOAL]
case inl.inl
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
ix : xl
jx : xr
β’ (fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
(Sum.inl ix) <
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
(Sum.inl jx)
[PROOFSTEP]
exact add_lt_add_right (ox.1 ix jx) _
[GOAL]
case inl.inr
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
ix : xl
jy : yr
β’ (fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
(Sum.inl ix) <
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
(Sum.inr jy)
[PROOFSTEP]
exact
(add_lf_add_of_lf_of_le (lf_mk _ _ ix) (oy.le_moveRight jy)).lt ((ox.moveLeft ix).add oy) (ox.add (oy.moveRight jy))
[GOAL]
case inr.inl
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
iy : yl
jx : xr
β’ (fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
(Sum.inr iy) <
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
(Sum.inl jx)
[PROOFSTEP]
exact
(add_lf_add_of_lf_of_le (mk_lf _ _ jx) (oy.moveLeft_le iy)).lt (ox.add (oy.moveLeft iy)) ((ox.moveRight jx).add oy)
[GOAL]
case inr.inr
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
iy : yl
jy : yr
β’ (fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
(Sum.inr iy) <
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
(Sum.inr jy)
[PROOFSTEP]
exact add_lt_add_left (oy.1 iy jy) β¨xl, xr, xL, xRβ©
[GOAL]
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
β’ (β (i : xl β yl),
Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
i)) β§
β (j : xr β yr),
Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
j)
[PROOFSTEP]
constructor
[GOAL]
case left
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
β’ β (i : xl β yl),
Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
i)
[PROOFSTEP]
rintro (ix | iy)
[GOAL]
case left.inl
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
ix : xl
β’ Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
(Sum.inl ix))
[PROOFSTEP]
exact (ox.moveLeft ix).add oy
[GOAL]
case left.inr
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
iy : yl
β’ Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yL a))
t)
(Sum.inr iy))
[PROOFSTEP]
exact ox.add (oy.moveLeft iy)
[GOAL]
case right
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
β’ β (j : xr β yr),
Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t)
fun t => Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
j)
[PROOFSTEP]
rintro (jx | jy)
[GOAL]
case right.inl
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
jx : xr
β’ Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
(Sum.inl jx))
[PROOFSTEP]
apply (ox.moveRight jx).add oy
[GOAL]
case right.inr
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
jy : yr
β’ Numeric
((fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i (PGame.mk yl yr yL yR))
(fun a =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr)
(fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xL a))
i y)
IHyl t)
fun t =>
Sum.rec
(fun i =>
(fun a =>
rec (motive := fun x => PGame β PGame)
(fun xl xr a a IHxl IHxr y =>
rec
(fun yl yr yL yR IHyl IHyr =>
let_fun y := PGame.mk yl yr yL yR;
PGame.mk (xl β yl) (xr β yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t =>
Sum.rec (fun i => IHxr i y) IHyr t)
y)
(xR a))
i y)
IHyr t)
(yR a))
t)
(Sum.inr jy))
[PROOFSTEP]
apply ox.add (oy.moveRight jy)
[GOAL]
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
xβ :
β (y : (x : PGame) Γ' (x_1 : PGame) Γ' (_ : Numeric x) Γ' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β
Numeric (y.1 + y.2.1)
ix : xl
β’ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.moveLeft (PGame.mk xl xr xL xR) ix,
snd :=
{ fst := PGame.mk yl yr yL yR,
snd := { fst := (_ : Numeric (PGame.moveLeft (PGame.mk xl xr xL xR) ix)), snd := oy } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
xβ :
β (y : (x : PGame) Γ' (x_1 : PGame) Γ' (_ : Numeric x) Γ' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β
Numeric (y.1 + y.2.1)
jy : yr
β’ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.mk xl xr xL xR,
snd :=
{ fst := PGame.moveRight (PGame.mk yl yr yL yR) jy,
snd := { fst := ox, snd := (_ : Numeric (PGame.moveRight (PGame.mk yl yr yL yR) jy)) } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
xβ :
β (y : (x : PGame) Γ' (x_1 : PGame) Γ' (_ : Numeric x) Γ' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β
Numeric (y.1 + y.2.1)
iy : yl
β’ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.mk xl xr xL xR,
snd :=
{ fst := PGame.moveLeft (PGame.mk yl yr yL yR) iy,
snd := { fst := ox, snd := (_ : Numeric (PGame.moveLeft (PGame.mk yl yr yL yR) iy)) } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
xβ :
β (y : (x : PGame) Γ' (x_1 : PGame) Γ' (_ : Numeric x) Γ' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β
Numeric (y.1 + y.2.1)
jx : xr
β’ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.moveRight (PGame.mk xl xr xL xR) jx,
snd :=
{ fst := PGame.mk yl yr yL yR,
snd := { fst := (_ : Numeric (PGame.moveRight (PGame.mk xl xr xL xR) jx)), snd := oy } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
xβ :
β (y : (x : PGame) Γ' (x_1 : PGame) Γ' (_ : Numeric x) Γ' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β
Numeric (y.1 + y.2.1)
ix : xl
β’ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.moveLeft (PGame.mk xl xr xL xR) ix,
snd :=
{ fst := PGame.mk yl yr yL yR,
snd := { fst := (_ : Numeric (PGame.moveLeft (PGame.mk xl xr xL xR) ix)), snd := oy } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
xβ :
β (y : (x : PGame) Γ' (x_1 : PGame) Γ' (_ : Numeric x) Γ' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β
Numeric (y.1 + y.2.1)
iy : yl
β’ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.mk xl xr xL xR,
snd := { fst := yL iy, snd := { fst := ox, snd := (_ : Numeric (PGame.moveLeft (PGame.mk yl yr yL yR) iy)) } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
xβ :
β (y : (x : PGame) Γ' (x_1 : PGame) Γ' (_ : Numeric x) Γ' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β
Numeric (y.1 + y.2.1)
jx : xr
β’ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.moveRight (PGame.mk xl xr xL xR) jx,
snd :=
{ fst := PGame.mk yl yr yL yR,
snd := { fst := (_ : Numeric (PGame.moveRight (PGame.mk xl xr xL xR) jx)), snd := oy } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
xl xr : Type u_1
xL : xl β PGame
xR : xr β PGame
yl yr : Type u_1
yL : yl β PGame
yR : yr β PGame
ox : Numeric (PGame.mk xl xr xL xR)
oy : Numeric (PGame.mk yl yr yL yR)
xβ :
β (y : (x : PGame) Γ' (x_1 : PGame) Γ' (_ : Numeric x) Γ' Numeric x_1),
(invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β
Numeric (y.1 + y.2.1)
jy : yr
β’ (invImage
(fun a =>
PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y))
Prod.instWellFoundedRelationProd).1
{ fst := PGame.mk xl xr xL xR,
snd :=
{ fst := PGame.moveRight (PGame.mk yl yr yL yR) jy,
snd := { fst := ox, snd := (_ : Numeric (PGame.moveRight (PGame.mk yl yr yL yR) jy)) } } }
{ fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } }
[PROOFSTEP]
pgame_wf_tac
[GOAL]
o : Ordinal.{u_1}
β’ Numeric (Ordinal.toPGame o)
[PROOFSTEP]
induction' o using Ordinal.induction with o IH
[GOAL]
case h
o : Ordinal.{u_1}
IH : β (k : Ordinal.{u_1}), k < o β Numeric (Ordinal.toPGame k)
β’ Numeric (Ordinal.toPGame o)
[PROOFSTEP]
apply numeric_of_isEmpty_rightMoves
[GOAL]
case h.H
o : Ordinal.{u_1}
IH : β (k : Ordinal.{u_1}), k < o β Numeric (Ordinal.toPGame k)
β’ β (i : LeftMoves (Ordinal.toPGame o)), Numeric (moveLeft (Ordinal.toPGame o) i)
[PROOFSTEP]
simpa using fun i => IH _ (Ordinal.toLeftMovesToPGame_symm_lt i)
[GOAL]
β’ β (a b c : Surreal), a + b + c = a + (b + c)
[PROOFSTEP]
rintro β¨_β© β¨_β© β¨_β©
[GOAL]
case mk.mk.mk
aβΒ³ : Surreal
aβΒ² : Subtype Numeric
bβ : Surreal
aβΒΉ : Subtype Numeric
cβ : Surreal
aβ : Subtype Numeric
β’ Quot.mk Setoid.r aβΒ² + Quot.mk Setoid.r aβΒΉ + Quot.mk Setoid.r aβ =
Quot.mk Setoid.r aβΒ² + (Quot.mk Setoid.r aβΒΉ + Quot.mk Setoid.r aβ)
[PROOFSTEP]
exact Quotient.sound add_assoc_equiv
[GOAL]
β’ β (a : Surreal), 0 + a = a
[PROOFSTEP]
rintro β¨aβ©
[GOAL]
case mk
aβ : Surreal
a : Subtype Numeric
β’ 0 + Quot.mk Setoid.r a = Quot.mk Setoid.r a
[PROOFSTEP]
exact Quotient.sound (zero_add_equiv a)
[GOAL]
β’ β (a : Surreal), a + 0 = a
[PROOFSTEP]
rintro β¨aβ©
[GOAL]
case mk
aβ : Surreal
a : Subtype Numeric
β’ Quot.mk Setoid.r a + 0 = Quot.mk Setoid.r a
[PROOFSTEP]
exact Quotient.sound (add_zero_equiv a)
[GOAL]
β’ β (a : Surreal), -a + a = 0
[PROOFSTEP]
rintro β¨aβ©
[GOAL]
case mk
aβ : Surreal
a : Subtype Numeric
β’ -Quot.mk Setoid.r a + Quot.mk Setoid.r a = 0
[PROOFSTEP]
exact Quotient.sound (add_left_neg_equiv a)
[GOAL]
β’ β (a b : Surreal), a + b = b + a
[PROOFSTEP]
rintro β¨_β© β¨_β©
[GOAL]
case mk.mk
aβΒ² : Surreal
aβΒΉ : Subtype Numeric
bβ : Surreal
aβ : Subtype Numeric
β’ Quot.mk Setoid.r aβΒΉ + Quot.mk Setoid.r aβ = Quot.mk Setoid.r aβ + Quot.mk Setoid.r aβΒΉ
[PROOFSTEP]
exact Quotient.sound add_comm_equiv
[GOAL]
β’ β (a : Surreal), a β€ a
[PROOFSTEP]
rintro β¨_β©
[GOAL]
case mk
aβΒΉ : Surreal
aβ : Subtype Numeric
β’ Quot.mk Setoid.r aβ β€ Quot.mk Setoid.r aβ
[PROOFSTEP]
apply @le_rfl PGame
[GOAL]
β’ β (a b c : Surreal), a β€ b β b β€ c β a β€ c
[PROOFSTEP]
rintro β¨_β© β¨_β© β¨_β©
[GOAL]
case mk.mk.mk
aβΒ³ : Surreal
aβΒ² : Subtype Numeric
bβ : Surreal
aβΒΉ : Subtype Numeric
cβ : Surreal
aβ : Subtype Numeric
β’ Quot.mk Setoid.r aβΒ² β€ Quot.mk Setoid.r aβΒΉ β
Quot.mk Setoid.r aβΒΉ β€ Quot.mk Setoid.r aβ β Quot.mk Setoid.r aβΒ² β€ Quot.mk Setoid.r aβ
[PROOFSTEP]
apply @le_trans PGame
[GOAL]
β’ β (a b : Surreal), a < b β a β€ b β§ Β¬b β€ a
[PROOFSTEP]
rintro β¨_, oxβ© β¨_, oyβ©
[GOAL]
case mk.mk.mk.mk
aβ : Surreal
valβΒΉ : PGame
ox : Numeric valβΒΉ
bβ : Surreal
valβ : PGame
oy : Numeric valβ
β’ Quot.mk Setoid.r { val := valβΒΉ, property := ox } < Quot.mk Setoid.r { val := valβ, property := oy } β
Quot.mk Setoid.r { val := valβΒΉ, property := ox } β€ Quot.mk Setoid.r { val := valβ, property := oy } β§
Β¬Quot.mk Setoid.r { val := valβ, property := oy } β€ Quot.mk Setoid.r { val := valβΒΉ, property := ox }
[PROOFSTEP]
apply @lt_iff_le_not_le PGame
[GOAL]
β’ β (a b : Surreal), a β€ b β b β€ a β a = b
[PROOFSTEP]
rintro β¨_β© β¨_β© hβ hβ
[GOAL]
case mk.mk
aβΒ² : Surreal
aβΒΉ : Subtype Numeric
bβ : Surreal
aβ : Subtype Numeric
hβ : Quot.mk Setoid.r aβΒΉ β€ Quot.mk Setoid.r aβ
hβ : Quot.mk Setoid.r aβ β€ Quot.mk Setoid.r aβΒΉ
β’ Quot.mk Setoid.r aβΒΉ = Quot.mk Setoid.r aβ
[PROOFSTEP]
exact Quotient.sound β¨hβ, hββ©
[GOAL]
β’ β (a b : Surreal), a β€ b β β (c : Surreal), c + a β€ c + b
[PROOFSTEP]
rintro β¨_β© β¨_β© hx β¨_β©
[GOAL]
case mk.mk.mk
aβΒ³ : Surreal
aβΒ² : Subtype Numeric
bβ : Surreal
aβΒΉ : Subtype Numeric
hx : Quot.mk Setoid.r aβΒ² β€ Quot.mk Setoid.r aβΒΉ
cβ : Surreal
aβ : Subtype Numeric
β’ Quot.mk Setoid.r aβ + Quot.mk Setoid.r aβΒ² β€ Quot.mk Setoid.r aβ + Quot.mk Setoid.r aβΒΉ
[PROOFSTEP]
exact @add_le_add_left PGame _ _ _ _ _ hx _
[GOAL]
srcβ : OrderedAddCommGroup Surreal := orderedAddCommGroup
β’ β (a b : Surreal), a β€ b β¨ b β€ a
[PROOFSTEP]
rintro β¨β¨x, oxβ©β© β¨β¨y, oyβ©β©
[GOAL]
case mk.mk.mk.mk
srcβ : OrderedAddCommGroup Surreal := orderedAddCommGroup
aβ : Surreal
x : PGame
ox : Numeric x
bβ : Surreal
y : PGame
oy : Numeric y
β’ Quot.mk Setoid.r { val := x, property := ox } β€ Quot.mk Setoid.r { val := y, property := oy } β¨
Quot.mk Setoid.r { val := y, property := oy } β€ Quot.mk Setoid.r { val := x, property := ox }
[PROOFSTEP]
exact or_iff_not_imp_left.2 fun h => (PGame.not_le.1 h).le oy ox
[GOAL]
β’ β (x y : Surreal),
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(x + y) =
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
x +
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
y
[PROOFSTEP]
rintro β¨_, _β© β¨_, _β©
[GOAL]
case mk.mk.mk.mk
xβ : Surreal
valβΒΉ : PGame
propertyβΒΉ : Numeric valβΒΉ
yβ : Surreal
valβ : PGame
propertyβ : Numeric valβ
β’ ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame}, Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(Quot.mk Setoid.r { val := valβΒΉ, property := propertyβΒΉ } +
Quot.mk Setoid.r { val := valβ, property := propertyβ }) =
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(Quot.mk Setoid.r { val := valβΒΉ, property := propertyβΒΉ }) +
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(Quot.mk Setoid.r { val := valβ, property := propertyβ })
[PROOFSTEP]
rfl
[GOAL]
β’ Monotone
(β{
toZeroHom :=
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) },
map_add' :=
(_ :
β (x y : Surreal),
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(x + y) =
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
x +
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
y) }).toFun
[PROOFSTEP]
rintro β¨_, _β© β¨_, _β©
[GOAL]
case mk.mk.mk.mk
aβ : Surreal
valβΒΉ : PGame
propertyβΒΉ : Numeric valβΒΉ
bβ : Surreal
valβ : PGame
propertyβ : Numeric valβ
β’ Quot.mk Setoid.r { val := valβΒΉ, property := propertyβΒΉ } β€ Quot.mk Setoid.r { val := valβ, property := propertyβ } β
ZeroHom.toFun
(β{
toZeroHom :=
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) },
map_add' :=
(_ :
β (x y : Surreal),
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(x + y) =
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
x +
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
y) })
(Quot.mk Setoid.r { val := valβΒΉ, property := propertyβΒΉ }) β€
ZeroHom.toFun
(β{
toZeroHom :=
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) },
map_add' :=
(_ :
β (x y : Surreal),
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
(x + y) =
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
x +
ZeroHom.toFun
{
toFun :=
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y),
map_zero' :=
(_ :
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0 =
lift (fun x x_1 => Quotient.mk setoid x)
(_ :
β {x y : PGame},
Numeric x β
Numeric y β PGame.Equiv x y β Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y)
0) }
y) })
(Quot.mk Setoid.r { val := valβ, property := propertyβ })
[PROOFSTEP]
exact id
[GOAL]
a b : Ordinal.{?u.73448}
h :
(fun o => Surreal.mk (toPGame o) (_ : Numeric (toPGame o))) a =
(fun o => Surreal.mk (toPGame o) (_ : Numeric (toPGame o))) b
β’ toPGame a β toPGame b
[PROOFSTEP]
apply Quotient.exact h
| {"mathlib_filename": "Mathlib.SetTheory.Surreal.Basic", "llama_tokens": 35676} |
[GOAL]
p : β
pp : Prime p
m : β
hm : m β£ p
β’ m = 1 β¨ m = p
[PROOFSTEP]
obtain β¨n, hnβ© := hm
[GOAL]
case intro
p : β
pp : Prime p
m n : β
hn : p = m * n
β’ m = 1 β¨ m = p
[PROOFSTEP]
have := pp.isUnit_or_isUnit hn
[GOAL]
case intro
p : β
pp : Prime p
m n : β
hn : p = m * n
this : IsUnit m β¨ IsUnit n
β’ m = 1 β¨ m = p
[PROOFSTEP]
rw [Nat.isUnit_iff, Nat.isUnit_iff] at this
[GOAL]
case intro
p : β
pp : Prime p
m n : β
hn : p = m * n
this : m = 1 β¨ n = 1
β’ m = 1 β¨ m = p
[PROOFSTEP]
apply Or.imp_right _ this
[GOAL]
p : β
pp : Prime p
m n : β
hn : p = m * n
this : m = 1 β¨ n = 1
β’ n = 1 β m = p
[PROOFSTEP]
rintro rfl
[GOAL]
p : β
pp : Prime p
m : β
hn : p = m * 1
this : m = 1 β¨ 1 = 1
β’ m = p
[PROOFSTEP]
rw [hn, mul_one]
[GOAL]
p : β
β’ Prime p β 2 β€ p β§ β (m : β), m β£ p β m = 1 β¨ m = p
[PROOFSTEP]
refine'
β¨fun h => β¨h.two_le, h.eq_one_or_self_of_dvdβ©, fun h => _β©
-- Porting note: needed to make β explicit
[GOAL]
p : β
h : 2 β€ p β§ β (m : β), m β£ p β m = 1 β¨ m = p
β’ Prime p
[PROOFSTEP]
have h1 := (@one_lt_two β ..).trans_le h.1
[GOAL]
p : β
h : 2 β€ p β§ β (m : β), m β£ p β m = 1 β¨ m = p
h1 : 1 < p
β’ Prime p
[PROOFSTEP]
refine' β¨mt Nat.isUnit_iff.mp h1.ne', fun a b hab => _β©
[GOAL]
p : β
h : 2 β€ p β§ β (m : β), m β£ p β m = 1 β¨ m = p
h1 : 1 < p
a b : β
hab : p = a * b
β’ IsUnit a β¨ IsUnit b
[PROOFSTEP]
simp only [Nat.isUnit_iff]
[GOAL]
p : β
h : 2 β€ p β§ β (m : β), m β£ p β m = 1 β¨ m = p
h1 : 1 < p
a b : β
hab : p = a * b
β’ a = 1 β¨ b = 1
[PROOFSTEP]
apply Or.imp_right _ (h.2 a _)
[GOAL]
p : β
h : 2 β€ p β§ β (m : β), m β£ p β m = 1 β¨ m = p
h1 : 1 < p
a b : β
hab : p = a * b
β’ a = p β b = 1
[PROOFSTEP]
rintro rfl
[GOAL]
a b : β
h : 2 β€ a β§ β (m : β), m β£ a β m = 1 β¨ m = a
h1 : 1 < a
hab : a = a * b
β’ b = 1
[PROOFSTEP]
rw [β mul_right_inj' (pos_of_gt h1).ne', β hab, mul_one]
[GOAL]
p : β
h : 2 β€ p β§ β (m : β), m β£ p β m = 1 β¨ m = p
h1 : 1 < p
a b : β
hab : p = a * b
β’ a β£ p
[PROOFSTEP]
rw [hab]
[GOAL]
p : β
h : 2 β€ p β§ β (m : β), m β£ p β m = 1 β¨ m = p
h1 : 1 < p
a b : β
hab : p = a * b
β’ a β£ a * b
[PROOFSTEP]
exact dvd_mul_right _ _
[GOAL]
p : β
p2 : 2 β€ p
m : β
h : m < p β m β£ p β m = 1
m2 : 2 β€ m
l : m < p
d : m β£ p
β’ 1 < 2
[PROOFSTEP]
decide
[GOAL]
p : β
p2 : 2 β€ p
m : β
h : 2 β€ m β m < p β Β¬m β£ p
l : m < p
d : m β£ p
β’ m = 1
[PROOFSTEP]
rcases m with (_ | _ | m)
[GOAL]
case zero
p : β
p2 : 2 β€ p
h : 2 β€ zero β zero < p β Β¬zero β£ p
l : zero < p
d : zero β£ p
β’ zero = 1
[PROOFSTEP]
rw [eq_zero_of_zero_dvd d] at p2
[GOAL]
case zero
p : β
p2 : 2 β€ 0
h : 2 β€ zero β zero < p β Β¬zero β£ p
l : zero < p
d : zero β£ p
β’ zero = 1
[PROOFSTEP]
revert p2
[GOAL]
case zero
p : β
h : 2 β€ zero β zero < p β Β¬zero β£ p
l : zero < p
d : zero β£ p
β’ 2 β€ 0 β zero = 1
[PROOFSTEP]
decide
[GOAL]
case succ.zero
p : β
p2 : 2 β€ p
h : 2 β€ succ zero β succ zero < p β Β¬succ zero β£ p
l : succ zero < p
d : succ zero β£ p
β’ succ zero = 1
[PROOFSTEP]
rfl
[GOAL]
case succ.succ
p : β
p2 : 2 β€ p
m : β
h : 2 β€ succ (succ m) β succ (succ m) < p β Β¬succ (succ m) β£ p
l : succ (succ m) < p
d : succ (succ m) β£ p
β’ succ (succ m) = 1
[PROOFSTEP]
exact (h le_add_self l).elim d
[GOAL]
p : β
p2 : 2 β€ p
a : β (m : β), 2 β€ m β m β€ sqrt p β Β¬m β£ p
this : β {m k : β}, m β€ k β 1 < m β p β m * k
m : β
m2 : 2 β€ m
l : m < p
xβ : m β£ p
k : β
e : p = m * k
β’ False
[PROOFSTEP]
cases' le_total m k with mk km
[GOAL]
case inl
p : β
p2 : 2 β€ p
a : β (m : β), 2 β€ m β m β€ sqrt p β Β¬m β£ p
this : β {m k : β}, m β€ k β 1 < m β p β m * k
m : β
m2 : 2 β€ m
l : m < p
xβ : m β£ p
k : β
e : p = m * k
mk : m β€ k
β’ False
[PROOFSTEP]
exact this mk m2 e
[GOAL]
case inr
p : β
p2 : 2 β€ p
a : β (m : β), 2 β€ m β m β€ sqrt p β Β¬m β£ p
this : β {m k : β}, m β€ k β 1 < m β p β m * k
m : β
m2 : 2 β€ m
l : m < p
xβ : m β£ p
k : β
e : p = m * k
km : k β€ m
β’ False
[PROOFSTEP]
rw [mul_comm] at e
[GOAL]
case inr
p : β
p2 : 2 β€ p
a : β (m : β), 2 β€ m β m β€ sqrt p β Β¬m β£ p
this : β {m k : β}, m β€ k β 1 < m β p β m * k
m : β
m2 : 2 β€ m
l : m < p
xβ : m β£ p
k : β
e : p = k * m
km : k β€ m
β’ False
[PROOFSTEP]
refine' this km (lt_of_mul_lt_mul_right _ (zero_le m)) e
[GOAL]
case inr
p : β
p2 : 2 β€ p
a : β (m : β), 2 β€ m β m β€ sqrt p β Β¬m β£ p
this : β {m k : β}, m β€ k β 1 < m β p β m * k
m : β
m2 : 2 β€ m
l : m < p
xβ : m β£ p
k : β
e : p = k * m
km : k β€ m
β’ 1 * m < k * m
[PROOFSTEP]
rwa [one_mul, β e]
[GOAL]
n : β
h1 : 1 < n
h : β (m : β), m < n β m β 0 β coprime n m
β’ Prime n
[PROOFSTEP]
refine' prime_def_lt.mpr β¨h1, fun m mlt mdvd => _β©
[GOAL]
n : β
h1 : 1 < n
h : β (m : β), m < n β m β 0 β coprime n m
m : β
mlt : m < n
mdvd : m β£ n
β’ m = 1
[PROOFSTEP]
have hm : m β 0 := by
rintro rfl
rw [zero_dvd_iff] at mdvd
exact mlt.ne' mdvd
[GOAL]
n : β
h1 : 1 < n
h : β (m : β), m < n β m β 0 β coprime n m
m : β
mlt : m < n
mdvd : m β£ n
β’ m β 0
[PROOFSTEP]
rintro rfl
[GOAL]
n : β
h1 : 1 < n
h : β (m : β), m < n β m β 0 β coprime n m
mlt : 0 < n
mdvd : 0 β£ n
β’ False
[PROOFSTEP]
rw [zero_dvd_iff] at mdvd
[GOAL]
n : β
h1 : 1 < n
h : β (m : β), m < n β m β 0 β coprime n m
mlt : 0 < n
mdvd : n = 0
β’ False
[PROOFSTEP]
exact mlt.ne' mdvd
[GOAL]
n : β
h1 : 1 < n
h : β (m : β), m < n β m β 0 β coprime n m
m : β
mlt : m < n
mdvd : m β£ n
hm : m β 0
β’ m = 1
[PROOFSTEP]
exact (h m mlt hm).symm.eq_one_of_dvd mdvd
[GOAL]
β’ Prime 2
[PROOFSTEP]
decide
[GOAL]
β’ Prime 3
[PROOFSTEP]
decide
[GOAL]
p : β
hp : Prime p
h_two : p β 2
h_three : p β 3
β’ 5 β€ p
[PROOFSTEP]
by_contra' h
[GOAL]
p : β
hp : Prime p
h_two : p β 2
h_three : p β 3
h : p < 5
β’ False
[PROOFSTEP]
revert h_two h_three hp
[GOAL]
p : β
h : p < 5
β’ Prime p β p β 2 β p β 3 β False
[PROOFSTEP]
match p with
| 0 => decide
| 1 => decide
| 2 => decide
| 3 => decide
| 4 => decide
| n + 5 => exact (h.not_le le_add_self).elim
[GOAL]
p : β
h : 0 < 5
β’ Prime 0 β 0 β 2 β 0 β 3 β False
[PROOFSTEP]
decide
[GOAL]
p : β
h : 1 < 5
β’ Prime 1 β 1 β 2 β 1 β 3 β False
[PROOFSTEP]
decide
[GOAL]
p : β
h : 2 < 5
β’ Prime 2 β 2 β 2 β 2 β 3 β False
[PROOFSTEP]
decide
[GOAL]
p : β
h : 3 < 5
β’ Prime 3 β 3 β 2 β 3 β 3 β False
[PROOFSTEP]
decide
[GOAL]
p : β
h : 4 < 5
β’ Prime 4 β 4 β 2 β 4 β 3 β False
[PROOFSTEP]
decide
[GOAL]
p n : β
h : n + 5 < 5
β’ Prime (n + 5) β n + 5 β 2 β n + 5 β 3 β False
[PROOFSTEP]
exact (h.not_le le_add_self).elim
[GOAL]
a b : β
a1 : 1 < a
b1 : 1 < b
h : Prime (a * b)
β’ a * 1 = a * b
[PROOFSTEP]
simpa using (dvd_prime_two_le h a1).1 (dvd_mul_right _ _)
[GOAL]
a b n : β
h : a * b = n
hβ : 1 < a
hβ : 1 < b
β’ Β¬Prime n
[PROOFSTEP]
rw [β h]
[GOAL]
a b n : β
h : a * b = n
hβ : 1 < a
hβ : 1 < b
β’ Β¬Prime (a * b)
[PROOFSTEP]
exact not_prime_mul hβ hβ
[GOAL]
a b : β
β’ Prime (a * b) β Prime a β§ b = 1 β¨ Prime b β§ a = 1
[PROOFSTEP]
simp only [iff_self_iff, irreducible_mul_iff, β irreducible_iff_nat_prime, Nat.isUnit_iff]
[GOAL]
p a : β
hp : Prime p
a1 : a β 1
β’ a β£ p β p = a
[PROOFSTEP]
refine'
β¨_, by
rintro rfl
rflβ©
[GOAL]
p a : β
hp : Prime p
a1 : a β 1
β’ p = a β a β£ p
[PROOFSTEP]
rintro rfl
[GOAL]
p : β
hp : Prime p
a1 : p β 1
β’ p β£ p
[PROOFSTEP]
rfl
[GOAL]
p a : β
hp : Prime p
a1 : a β 1
β’ a β£ p β p = a
[PROOFSTEP]
rintro β¨j, rflβ©
[GOAL]
case intro
a : β
a1 : a β 1
j : β
hp : Prime (a * j)
β’ a * j = a
[PROOFSTEP]
rcases prime_mul_iff.mp hp with (β¨_, rflβ© | β¨_, rflβ©)
[GOAL]
case intro.inl.intro
a : β
a1 : a β 1
leftβ : Prime a
hp : Prime (a * 1)
β’ a * 1 = a
[PROOFSTEP]
exact mul_one _
[GOAL]
case intro.inr.intro
j : β
leftβ : Prime j
a1 : 1 β 1
hp : Prime (1 * j)
β’ 1 * j = 1
[PROOFSTEP]
exact (a1 rfl).elim
[GOAL]
n k : β
h : Β¬n < k * k
β’ 0 < 2
[PROOFSTEP]
decide
[GOAL]
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
β’ Nat.minFacProp n (minFacAux n xβ)
[PROOFSTEP]
rw [minFacAux]
[GOAL]
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
β’ Nat.minFacProp n
(if h : n < xβ * xβ then n
else
if xβ β£ n then xβ
else
let_fun this := (_ : sqrt n - xβ < sqrt n + 2 - xβ);
minFacAux n (xβ + 2))
[PROOFSTEP]
by_cases h : n < k * k
[GOAL]
case pos
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : n < k * k
β’ Nat.minFacProp n
(if h : n < xβ * xβ then n
else
if xβ β£ n then xβ
else
let_fun this := (_ : sqrt n - xβ < sqrt n + 2 - xβ);
minFacAux n (xβ + 2))
[PROOFSTEP]
simp [h]
[GOAL]
case neg
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
β’ Nat.minFacProp n
(if h : n < xβ * xβ then n
else
if xβ β£ n then xβ
else
let_fun this := (_ : sqrt n - xβ < sqrt n + 2 - xβ);
minFacAux n (xβ + 2))
[PROOFSTEP]
simp [h]
[GOAL]
case pos
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : n < k * k
β’ Nat.minFacProp n n
[PROOFSTEP]
have pp : Prime n := prime_def_le_sqrt.2 β¨n2, fun m m2 l d => not_lt_of_ge l <| lt_of_lt_of_le (sqrt_lt.2 h) (a m m2 d)β©
[GOAL]
case pos
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : n < k * k
pp : Prime n
β’ Nat.minFacProp n n
[PROOFSTEP]
exact β¨n2, dvd_rfl, fun m m2 d => le_of_eq ((dvd_prime_two_le pp m2).1 d).symmβ©
[GOAL]
case neg
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
β’ Nat.minFacProp n (if xβ β£ n then xβ else minFacAux n (xβ + 2))
[PROOFSTEP]
have k2 : 2 β€ k := by
subst e
apply Nat.le_add_left
[GOAL]
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
β’ 2 β€ k
[PROOFSTEP]
subst e
[GOAL]
n : β
n2 : 2 β€ n
i : β
k : β := 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β 2 * i + 3 β€ m
h : Β¬n < k * k
β’ 2 β€ k
[PROOFSTEP]
apply Nat.le_add_left
[GOAL]
case neg
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
β’ Nat.minFacProp n (if xβ β£ n then xβ else minFacAux n (xβ + 2))
[PROOFSTEP]
by_cases dk : k β£ n
[GOAL]
case pos
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : k β£ n
β’ Nat.minFacProp n (if xβ β£ n then xβ else minFacAux n (xβ + 2))
[PROOFSTEP]
simp [dk]
[GOAL]
case neg
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
β’ Nat.minFacProp n (if xβ β£ n then xβ else minFacAux n (xβ + 2))
[PROOFSTEP]
simp [dk]
[GOAL]
case pos
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : k β£ n
β’ Nat.minFacProp n xβ
[PROOFSTEP]
exact β¨k2, dk, aβ©
[GOAL]
case neg
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
β’ Nat.minFacProp n (minFacAux n (xβ + 2))
[PROOFSTEP]
refine'
have := minFac_lemma n k h
minFacAux_has_prop n2 (k + 2) (i + 1) (by simp [e, left_distrib]) fun m m2 d => _
[GOAL]
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
this : sqrt n - k < sqrt n + 2 - k
β’ k + 2 = 2 * (i + 1) + 3
[PROOFSTEP]
simp [e, left_distrib]
[GOAL]
case neg
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
this : sqrt n - k < sqrt n + 2 - k
m : β
m2 : 2 β€ m
d : m β£ n
β’ k + 2 β€ m
[PROOFSTEP]
cases' Nat.eq_or_lt_of_le (a m m2 d) with me ml
[GOAL]
case neg.inl
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
this : sqrt n - k < sqrt n + 2 - k
m : β
m2 : 2 β€ m
d : m β£ n
me : xβ = m
β’ k + 2 β€ m
[PROOFSTEP]
subst me
[GOAL]
case neg.inl
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
this : sqrt n - k < sqrt n + 2 - k
m2 : 2 β€ xβ
d : xβ β£ n
β’ k + 2 β€ xβ
[PROOFSTEP]
contradiction
[GOAL]
case neg.inr
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
this : sqrt n - k < sqrt n + 2 - k
m : β
m2 : 2 β€ m
d : m β£ n
ml : xβ < m
β’ k + 2 β€ m
[PROOFSTEP]
apply (Nat.eq_or_lt_of_le ml).resolve_left
[GOAL]
case neg.inr
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
this : sqrt n - k < sqrt n + 2 - k
m : β
m2 : 2 β€ m
d : m β£ n
ml : xβ < m
β’ Β¬succ xβ = m
[PROOFSTEP]
intro me
[GOAL]
case neg.inr
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
this : sqrt n - k < sqrt n + 2 - k
m : β
m2 : 2 β€ m
d : m β£ n
ml : xβ < m
me : succ xβ = m
β’ False
[PROOFSTEP]
rw [β me, e] at d
[GOAL]
case neg.inr
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
this : sqrt n - k < sqrt n + 2 - k
m : β
m2 : 2 β€ m
d : succ (2 * i + 3) β£ n
ml : xβ < m
me : succ xβ = m
β’ False
[PROOFSTEP]
have d' : 2 * (i + 2) β£ n := d
[GOAL]
case neg.inr
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
this : sqrt n - k < sqrt n + 2 - k
m : β
m2 : 2 β€ m
d : succ (2 * i + 3) β£ n
ml : xβ < m
me : succ xβ = m
d' : 2 * (i + 2) β£ n
β’ False
[PROOFSTEP]
have := a _ le_rfl (dvd_of_mul_right_dvd d')
[GOAL]
case neg.inr
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
thisβ : sqrt n - k < sqrt n + 2 - k
m : β
m2 : 2 β€ m
d : succ (2 * i + 3) β£ n
ml : xβ < m
me : succ xβ = m
d' : 2 * (i + 2) β£ n
this : xβ β€ 2
β’ False
[PROOFSTEP]
rw [e] at this
[GOAL]
case neg.inr
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
thisβ : sqrt n - k < sqrt n + 2 - k
m : β
m2 : 2 β€ m
d : succ (2 * i + 3) β£ n
ml : xβ < m
me : succ xβ = m
d' : 2 * (i + 2) β£ n
this : 2 * i + 3 β€ 2
β’ False
[PROOFSTEP]
exact absurd this (by contradiction)
[GOAL]
n : β
n2 : 2 β€ n
xβ : β
k : β := xβ
i : β
e : xβ = 2 * i + 3
a : β (m : β), 2 β€ m β m β£ n β xβ β€ m
h : Β¬n < k * k
k2 : 2 β€ k
dk : Β¬k β£ n
thisβ : sqrt n - k < sqrt n + 2 - k
m : β
m2 : 2 β€ m
d : succ (2 * i + 3) β£ n
ml : xβ < m
me : succ xβ = m
d' : 2 * (i + 2) β£ n
this : 2 * i + 3 β€ 2
β’ Β¬2 * i + 3 β€ 2
[PROOFSTEP]
contradiction
[GOAL]
n : β
n1 : n β 1
β’ Nat.minFacProp n (minFac n)
[PROOFSTEP]
by_cases n0 : n = 0
[GOAL]
case pos
n : β
n1 : n β 1
n0 : n = 0
β’ Nat.minFacProp n (minFac n)
[PROOFSTEP]
simp [n0, minFacProp, GE.ge]
[GOAL]
case neg
n : β
n1 : n β 1
n0 : Β¬n = 0
β’ Nat.minFacProp n (minFac n)
[PROOFSTEP]
have n2 : 2 β€ n := by
revert n0 n1
rcases n with (_ | _ | _) <;> simp [succ_le_succ]
[GOAL]
n : β
n1 : n β 1
n0 : Β¬n = 0
β’ 2 β€ n
[PROOFSTEP]
revert n0 n1
[GOAL]
n : β
β’ n β 1 β Β¬n = 0 β 2 β€ n
[PROOFSTEP]
rcases n with (_ | _ | _)
[GOAL]
case zero
β’ zero β 1 β Β¬zero = 0 β 2 β€ zero
[PROOFSTEP]
simp [succ_le_succ]
[GOAL]
case succ.zero
β’ succ zero β 1 β Β¬succ zero = 0 β 2 β€ succ zero
[PROOFSTEP]
simp [succ_le_succ]
[GOAL]
case succ.succ
nβ : β
β’ succ (succ nβ) β 1 β Β¬succ (succ nβ) = 0 β 2 β€ succ (succ nβ)
[PROOFSTEP]
simp [succ_le_succ]
[GOAL]
case neg
n : β
n1 : n β 1
n0 : Β¬n = 0
n2 : 2 β€ n
β’ Nat.minFacProp n (minFac n)
[PROOFSTEP]
simp [minFac_eq]
[GOAL]
case neg
n : β
n1 : n β 1
n0 : Β¬n = 0
n2 : 2 β€ n
β’ Nat.minFacProp n (if 2 β£ n then 2 else minFacAux n 3)
[PROOFSTEP]
by_cases d2 : 2 β£ n
[GOAL]
case pos
n : β
n1 : n β 1
n0 : Β¬n = 0
n2 : 2 β€ n
d2 : 2 β£ n
β’ Nat.minFacProp n (if 2 β£ n then 2 else minFacAux n 3)
[PROOFSTEP]
simp [d2]
[GOAL]
case neg
n : β
n1 : n β 1
n0 : Β¬n = 0
n2 : 2 β€ n
d2 : Β¬2 β£ n
β’ Nat.minFacProp n (if 2 β£ n then 2 else minFacAux n 3)
[PROOFSTEP]
simp [d2]
[GOAL]
case pos
n : β
n1 : n β 1
n0 : Β¬n = 0
n2 : 2 β€ n
d2 : 2 β£ n
β’ Nat.minFacProp n 2
[PROOFSTEP]
exact β¨le_rfl, d2, fun k k2 _ => k2β©
[GOAL]
case neg
n : β
n1 : n β 1
n0 : Β¬n = 0
n2 : 2 β€ n
d2 : Β¬2 β£ n
β’ Nat.minFacProp n (minFacAux n 3)
[PROOFSTEP]
refine' minFacAux_has_prop n2 3 0 rfl fun m m2 d => (Nat.eq_or_lt_of_le m2).resolve_left (mt _ d2)
[GOAL]
case neg
n : β
n1 : n β 1
n0 : Β¬n = 0
n2 : 2 β€ n
d2 : Β¬2 β£ n
m : β
m2 : 2 β€ m
d : m β£ n
β’ 2 = m β 2 β£ n
[PROOFSTEP]
exact fun e => e.symm βΈ d
[GOAL]
n : β
n1 : n = 1
β’ minFac n β£ n
[PROOFSTEP]
simp [n1]
[GOAL]
n : β
β’ β {m : β}, 2 β€ m β m β£ n β minFac n β€ m
[PROOFSTEP]
by_cases n1 : n = 1 <;> [exact fun m2 _ => n1.symm βΈ le_trans (by decide) m2; apply (minFac_has_prop n1).2.2]
[GOAL]
n : β
β’ β {m : β}, 2 β€ m β m β£ n β minFac n β€ m
[PROOFSTEP]
by_cases n1 : n = 1
[GOAL]
case pos
n mβ : β
n1 : n = 1
β’ 2 β€ mβ β mβ β£ n β minFac n β€ mβ
[PROOFSTEP]
exact fun m2 _ => n1.symm βΈ le_trans (by decide) m2
[GOAL]
n mβ : β
n1 : n = 1
m2 : 2 β€ mβ
xβ : mβ β£ n
β’ minFac 1 β€ 2
[PROOFSTEP]
decide
[GOAL]
case neg
n mβ : β
n1 : Β¬n = 1
β’ 2 β€ mβ β mβ β£ n β minFac n β€ mβ
[PROOFSTEP]
apply (minFac_has_prop n1).2.2
[GOAL]
n : β
β’ 0 < minFac n
[PROOFSTEP]
by_cases n1 : n = 1 <;> [exact n1.symm βΈ (by decide); exact (minFac_prime n1).pos]
[GOAL]
n : β
β’ 0 < minFac n
[PROOFSTEP]
by_cases n1 : n = 1
[GOAL]
case pos
n : β
n1 : n = 1
β’ 0 < minFac n
[PROOFSTEP]
exact n1.symm βΈ (by decide)
[GOAL]
n : β
n1 : n = 1
β’ 0 < minFac 1
[PROOFSTEP]
decide
[GOAL]
case neg
n : β
n1 : Β¬n = 1
β’ 0 < minFac n
[PROOFSTEP]
exact (minFac_prime n1).pos
[GOAL]
m n : β
h : n = 1 β¨ m β€ minFac n
p : β
pp : Prime p
d : p β£ n
β’ n = 1 β m β€ p
[PROOFSTEP]
rintro rfl
[GOAL]
m p : β
pp : Prime p
h : 1 = 1 β¨ m β€ minFac 1
d : p β£ 1
β’ m β€ p
[PROOFSTEP]
cases pp.not_dvd_one d
[GOAL]
m n : β
h : n = 1 β¨ m β€ minFac n
p : β
pp : 1 < p
d : p β£ n
β’ n = 1 β m β€ p
[PROOFSTEP]
rintro rfl
[GOAL]
m p : β
pp : 1 < p
h : 1 = 1 β¨ m β€ minFac 1
d : p β£ 1
β’ m β€ p
[PROOFSTEP]
cases not_le_of_lt pp (le_of_dvd (by decide) d)
[GOAL]
m p : β
pp : 1 < p
h : 1 = 1 β¨ m β€ minFac 1
d : p β£ 1
β’ 0 < 1
[PROOFSTEP]
decide
[GOAL]
n : β
pos : 0 < n
np : Β¬Prime n
h0 : n = minFac n * 0
β’ Β¬0 < n
[PROOFSTEP]
rw [h0, mul_zero]
[GOAL]
n : β
pos : 0 < n
np : Β¬Prime n
h0 : n = minFac n * 0
β’ Β¬0 < 0
[PROOFSTEP]
exact by decide
[GOAL]
n : β
pos : 0 < n
np : Β¬Prime n
h0 : n = minFac n * 0
β’ Β¬0 < 0
[PROOFSTEP]
decide
[GOAL]
n : β
pos : 0 < n
np : Β¬Prime n
h1 : n = minFac n * 1
β’ minFac n β€ n / minFac n
[PROOFSTEP]
rw [mul_one] at h1
[GOAL]
n : β
pos : 0 < n
np : Β¬Prime n
h1 : n = minFac n
β’ minFac n β€ n / minFac n
[PROOFSTEP]
rw [prime_def_minFac, not_and_or, β h1, eq_self_iff_true, _root_.not_true, or_false_iff, not_le] at np
[GOAL]
n : β
pos : 0 < n
np : n < 2
h1 : n = minFac n
β’ minFac n β€ n / minFac n
[PROOFSTEP]
rw [le_antisymm (le_of_lt_succ np) (succ_le_of_lt pos), minFac_one, Nat.div_one]
[GOAL]
n : β
pos : 0 < n
np : Β¬Prime n
x : β
hx : n = minFac n * (x + 2)
β’ minFac n β€ n / minFac n
[PROOFSTEP]
conv_rhs =>
congr
rw [hx]
[GOAL]
n : β
pos : 0 < n
np : Β¬Prime n
x : β
hx : n = minFac n * (x + 2)
| n / minFac n
[PROOFSTEP]
congr
rw [hx]
[GOAL]
n : β
pos : 0 < n
np : Β¬Prime n
x : β
hx : n = minFac n * (x + 2)
| n / minFac n
[PROOFSTEP]
congr
rw [hx]
[GOAL]
n : β
pos : 0 < n
np : Β¬Prime n
x : β
hx : n = minFac n * (x + 2)
| n / minFac n
[PROOFSTEP]
congr
[GOAL]
case a
n : β
pos : 0 < n
np : Β¬Prime n
x : β
hx : n = minFac n * (x + 2)
| n
case a n : β pos : 0 < n np : Β¬Prime n x : β hx : n = minFac n * (x + 2) | minFac n
[PROOFSTEP]
rw [hx]
[GOAL]
n : β
pos : 0 < n
np : Β¬Prime n
x : β
hx : n = minFac n * (x + 2)
β’ minFac n β€ minFac n * (x + 2) / minFac n
[PROOFSTEP]
rw [Nat.mul_div_cancel_left _ (minFac_pos _)]
[GOAL]
n : β
pos : 0 < n
np : Β¬Prime n
x : β
hx : n = minFac n * (x + 2)
β’ minFac n β€ x + 2
[PROOFSTEP]
exact minFac_le_of_dvd (le_add_left 2 x) β¨minFac n, by rwa [mul_comm]β©
[GOAL]
n : β
pos : 0 < n
np : Β¬Prime n
x : β
hx : n = minFac n * (x + 2)
β’ n = (x + 2) * minFac n
[PROOFSTEP]
rwa [mul_comm]
[GOAL]
n : β
β’ minFac n = 1 β n = 1
[PROOFSTEP]
constructor
[GOAL]
case mp
n : β
β’ minFac n = 1 β n = 1
[PROOFSTEP]
intro h
[GOAL]
case mp
n : β
h : minFac n = 1
β’ n = 1
[PROOFSTEP]
by_contra hn
[GOAL]
case mp
n : β
h : minFac n = 1
hn : Β¬n = 1
β’ False
[PROOFSTEP]
have := minFac_prime hn
[GOAL]
case mp
n : β
h : minFac n = 1
hn : Β¬n = 1
this : Prime (minFac n)
β’ False
[PROOFSTEP]
rw [h] at this
[GOAL]
case mp
n : β
h : minFac n = 1
hn : Β¬n = 1
this : Prime 1
β’ False
[PROOFSTEP]
exact not_prime_one this
[GOAL]
case mpr
n : β
β’ n = 1 β minFac n = 1
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
β’ minFac 1 = 1
[PROOFSTEP]
rfl
[GOAL]
n : β
β’ minFac n = 2 β 2 β£ n
[PROOFSTEP]
constructor
[GOAL]
case mp
n : β
β’ minFac n = 2 β 2 β£ n
[PROOFSTEP]
intro h
[GOAL]
case mp
n : β
h : minFac n = 2
β’ 2 β£ n
[PROOFSTEP]
rw [β h]
[GOAL]
case mp
n : β
h : minFac n = 2
β’ minFac n β£ n
[PROOFSTEP]
exact minFac_dvd n
[GOAL]
case mpr
n : β
β’ 2 β£ n β minFac n = 2
[PROOFSTEP]
intro h
[GOAL]
case mpr
n : β
h : 2 β£ n
β’ minFac n = 2
[PROOFSTEP]
have ub := minFac_le_of_dvd (le_refl 2) h
[GOAL]
case mpr
n : β
h : 2 β£ n
ub : minFac n β€ 2
β’ minFac n = 2
[PROOFSTEP]
have lb := minFac_pos n
[GOAL]
case mpr
n : β
h : 2 β£ n
ub : minFac n β€ 2
lb : 0 < minFac n
β’ minFac n = 2
[PROOFSTEP]
refine ub.eq_or_lt.resolve_right fun h' => ?_
[GOAL]
case mpr
n : β
h : 2 β£ n
ub : minFac n β€ 2
lb : 0 < minFac n
h' : minFac n < 2
β’ False
[PROOFSTEP]
have := le_antisymm (Nat.succ_le_of_lt lb) (lt_succ_iff.mp h')
[GOAL]
case mpr
n : β
h : 2 β£ n
ub : minFac n β€ 2
lb : 0 < minFac n
h' : minFac n < 2
this : succ 0 = minFac n
β’ False
[PROOFSTEP]
rw [eq_comm, Nat.minFac_eq_one_iff] at this
[GOAL]
case mpr
n : β
h : 2 β£ n
ub : minFac n β€ 2
lb : 0 < minFac n
h' : minFac n < 2
this : n = 1
β’ False
[PROOFSTEP]
subst this
[GOAL]
case mpr
h : 2 β£ 1
ub : minFac 1 β€ 2
lb : 0 < minFac 1
h' : minFac 1 < 2
β’ False
[PROOFSTEP]
exact not_lt_of_le (le_of_dvd zero_lt_one h) one_lt_two
[GOAL]
a b : β
hdvd : β (p : β), Prime p β p β£ a β p * a β£ b
β’ a β£ b
[PROOFSTEP]
obtain rfl | ha := eq_or_ne a 1
[GOAL]
case inl
b : β
hdvd : β (p : β), Prime p β p β£ 1 β p * 1 β£ b
β’ 1 β£ b
[PROOFSTEP]
apply one_dvd
[GOAL]
case inr
a b : β
hdvd : β (p : β), Prime p β p β£ a β p * a β£ b
ha : a β 1
β’ a β£ b
[PROOFSTEP]
obtain β¨p, hpβ© := exists_prime_and_dvd ha
[GOAL]
case inr.intro
a b : β
hdvd : β (p : β), Prime p β p β£ a β p * a β£ b
ha : a β 1
p : β
hp : Prime p β§ p β£ a
β’ a β£ b
[PROOFSTEP]
exact _root_.trans (dvd_mul_left a p) (hdvd p hp.1 hp.2)
[GOAL]
β’ Β¬BddAbove {p | Prime p}
[PROOFSTEP]
rw [not_bddAbove_iff]
[GOAL]
β’ β (x : β), β y, y β {p | Prime p} β§ x < y
[PROOFSTEP]
intro n
[GOAL]
n : β
β’ β y, y β {p | Prime p} β§ n < y
[PROOFSTEP]
obtain β¨p, hi, hpβ© := exists_infinite_primes n.succ
[GOAL]
case intro.intro
n p : β
hi : succ n β€ p
hp : Prime p
β’ β y, y β {p | Prime p} β§ n < y
[PROOFSTEP]
exact β¨p, hp, hiβ©
[GOAL]
p : β
hp : Prime p
h : p % 2 = 0
β’ Β¬2 = 1
[PROOFSTEP]
decide
[GOAL]
p : β
hp : Prime p
β’ Even p β p = 2
[PROOFSTEP]
rw [even_iff_two_dvd, prime_dvd_prime_iff_eq prime_two hp, eq_comm]
[GOAL]
p : β
hp : Prime p
h2 : p β 2
n : β
hn : p = 2 * n + 1
β’ p - 1 = n + n
[PROOFSTEP]
rw [hn, Nat.add_sub_cancel, two_mul]
[GOAL]
p : β
instβ : Fact (Prime p)
β’ p % 2 = 1 β p β 2
[PROOFSTEP]
refine' β¨fun h hf => _, (Nat.Prime.eq_two_or_odd <| @Fact.out p.Prime _).resolve_leftβ©
[GOAL]
p : β
instβ : Fact (Prime p)
h : p % 2 = 1
hf : p = 2
β’ False
[PROOFSTEP]
rw [hf] at h
[GOAL]
p : β
instβ : Fact (Prime p)
h : 2 % 2 = 1
hf : p = 2
β’ False
[PROOFSTEP]
simp at h
[GOAL]
m n : β
H : β (k : β), Prime k β k β£ m β Β¬k β£ n
β’ coprime m n
[PROOFSTEP]
rw [coprime_iff_gcd_eq_one]
[GOAL]
m n : β
H : β (k : β), Prime k β k β£ m β Β¬k β£ n
β’ gcd m n = 1
[PROOFSTEP]
by_contra g2
[GOAL]
m n : β
H : β (k : β), Prime k β k β£ m β Β¬k β£ n
g2 : Β¬gcd m n = 1
β’ False
[PROOFSTEP]
obtain β¨p, hp, hpdvdβ© := exists_prime_and_dvd g2
[GOAL]
case intro.intro
m n : β
H : β (k : β), Prime k β k β£ m β Β¬k β£ n
g2 : Β¬gcd m n = 1
p : β
hp : Prime p
hpdvd : p β£ gcd m n
β’ False
[PROOFSTEP]
apply H p hp
[GOAL]
case intro.intro.a
m n : β
H : β (k : β), Prime k β k β£ m β Β¬k β£ n
g2 : Β¬gcd m n = 1
p : β
hp : Prime p
hpdvd : p β£ gcd m n
β’ p β£ m
[PROOFSTEP]
apply dvd_trans hpdvd
[GOAL]
case intro.intro.a
m n : β
H : β (k : β), Prime k β k β£ m β Β¬k β£ n
g2 : Β¬gcd m n = 1
p : β
hp : Prime p
hpdvd : p β£ gcd m n
β’ p β£ n
[PROOFSTEP]
apply dvd_trans hpdvd
[GOAL]
case intro.intro.a
m n : β
H : β (k : β), Prime k β k β£ m β Β¬k β£ n
g2 : Β¬gcd m n = 1
p : β
hp : Prime p
hpdvd : p β£ gcd m n
β’ gcd m n β£ m
[PROOFSTEP]
exact gcd_dvd_left _ _
[GOAL]
case intro.intro.a
m n : β
H : β (k : β), Prime k β k β£ m β Β¬k β£ n
g2 : Β¬gcd m n = 1
p : β
hp : Prime p
hpdvd : p β£ gcd m n
β’ gcd m n β£ n
[PROOFSTEP]
exact gcd_dvd_right _ _
[GOAL]
k : β
β’ k + 2 β 1
[PROOFSTEP]
apply Nat.ne_of_gt
[GOAL]
case h
k : β
β’ 1 < k + 2
[PROOFSTEP]
apply Nat.succ_lt_succ
[GOAL]
case h.a
k : β
β’ 0 < k + 1
[PROOFSTEP]
apply Nat.zero_lt_succ
[GOAL]
p n : β
pp : Prime p
co : coprime p n
d : p β£ n
β’ p β£ n * 1
[PROOFSTEP]
simp [d]
[GOAL]
m n : β
β’ Β¬coprime m n β β p, Prime p β§ p β£ m β§ p β£ n
[PROOFSTEP]
apply Iff.intro
[GOAL]
case mp
m n : β
β’ Β¬coprime m n β β p, Prime p β§ p β£ m β§ p β£ n
[PROOFSTEP]
intro h
[GOAL]
case mp
m n : β
h : Β¬coprime m n
β’ β p, Prime p β§ p β£ m β§ p β£ n
[PROOFSTEP]
exact
β¨minFac (gcd m n), minFac_prime h, (minFac_dvd (gcd m n)).trans (gcd_dvd_left m n),
(minFac_dvd (gcd m n)).trans (gcd_dvd_right m n)β©
[GOAL]
case mpr
m n : β
β’ (β p, Prime p β§ p β£ m β§ p β£ n) β Β¬coprime m n
[PROOFSTEP]
intro h
[GOAL]
case mpr
m n : β
h : β p, Prime p β§ p β£ m β§ p β£ n
β’ Β¬coprime m n
[PROOFSTEP]
cases' h with p hp
[GOAL]
case mpr.intro
m n p : β
hp : Prime p β§ p β£ m β§ p β£ n
β’ Β¬coprime m n
[PROOFSTEP]
apply Nat.not_coprime_of_dvd_of_dvd (Prime.one_lt hp.1) hp.2.1 hp.2.2
[GOAL]
p m n : β
pp : Prime p
Hm : Β¬p β£ m
Hn : Β¬p β£ n
β’ Β¬(p β£ m β¨ p β£ n)
[PROOFSTEP]
simp [Hm, Hn]
[GOAL]
p m n : β
pp : Prime p
h : p β£ m ^ n
β’ p β£ m
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
p m n : β
pp : Prime p
hβ : p β£ m ^ n
h : p β£ m ^ zero
β’ p β£ m
[PROOFSTEP]
exact pp.not_dvd_one.elim h
[GOAL]
case succ
p m nβ : β
pp : Prime p
hβ : p β£ m ^ nβ
n : β
IH : p β£ m ^ n β p β£ m
h : p β£ m ^ succ n
β’ p β£ m
[PROOFSTEP]
rw [pow_succ] at h
[GOAL]
case succ
p m nβ : β
pp : Prime p
hβ : p β£ m ^ nβ
n : β
IH : p β£ m ^ n β p β£ m
h : p β£ m ^ n * m
β’ p β£ m
[PROOFSTEP]
exact (pp.dvd_mul.1 h).elim IH id
[GOAL]
p a k : β
hp : Prime p
β’ a ^ k = p β a = p β§ k = 1
[PROOFSTEP]
refine' β¨fun h => _, fun h => by rw [h.1, h.2, pow_one]β©
[GOAL]
p a k : β
hp : Prime p
h : a = p β§ k = 1
β’ a ^ k = p
[PROOFSTEP]
rw [h.1, h.2, pow_one]
[GOAL]
p a k : β
hp : Prime p
h : a ^ k = p
β’ a = p β§ k = 1
[PROOFSTEP]
rw [β h] at hp
[GOAL]
p a k : β
hp : Prime (a ^ k)
h : a ^ k = p
β’ a = p β§ k = 1
[PROOFSTEP]
rw [β h, hp.eq_one_of_pow, eq_self_iff_true, and_true_iff, pow_one]
[GOAL]
n k : β
hk : k β 0
β’ minFac (n ^ k) = minFac n
[PROOFSTEP]
rcases eq_or_ne n 1 with (rfl | hn)
[GOAL]
case inl
k : β
hk : k β 0
β’ minFac (1 ^ k) = minFac 1
[PROOFSTEP]
simp
[GOAL]
case inr
n k : β
hk : k β 0
hn : n β 1
β’ minFac (n ^ k) = minFac n
[PROOFSTEP]
have hnk : n ^ k β 1 := fun hk' => hn ((pow_eq_one_iff hk).1 hk')
[GOAL]
case inr
n k : β
hk : k β 0
hn : n β 1
hnk : n ^ k β 1
β’ minFac (n ^ k) = minFac n
[PROOFSTEP]
apply (minFac_le_of_dvd (minFac_prime hn).two_le ((minFac_dvd n).pow hk)).antisymm
[GOAL]
case inr
n k : β
hk : k β 0
hn : n β 1
hnk : n ^ k β 1
β’ minFac n β€ minFac (n ^ k)
[PROOFSTEP]
apply minFac_le_of_dvd (minFac_prime hnk).two_le ((minFac_prime hnk).dvd_of_dvd_pow (minFac_dvd _))
[GOAL]
p k : β
hp : Prime p
hk : k β 0
β’ minFac (p ^ k) = p
[PROOFSTEP]
rw [Nat.pow_minFac hk, hp.minFac_eq]
[GOAL]
x y p : β
hp : Prime p
hx : x β 1
hy : y β 1
β’ x * y = p ^ 2 β x = p β§ y = p
[PROOFSTEP]
refine' β¨fun h => _, fun β¨hβ, hββ© => hβ.symm βΈ hβ.symm βΈ (sq _).symmβ©
[GOAL]
x y p : β
hp : Prime p
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
β’ x = p β§ y = p
[PROOFSTEP]
have pdvdxy : p β£ x * y := by rw [h];
simp [sq]
-- Could be `wlog := hp.dvd_mul.1 pdvdxy using x y`, but that imports more than we want.
[GOAL]
x y p : β
hp : Prime p
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
β’ p β£ x * y
[PROOFSTEP]
rw [h]
[GOAL]
x y p : β
hp : Prime p
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
β’ p β£ p ^ 2
[PROOFSTEP]
simp [sq]
-- Could be `wlog := hp.dvd_mul.1 pdvdxy using x y`, but that imports more than we want.
[GOAL]
x y p : β
hp : Prime p
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
β’ x = p β§ y = p
[PROOFSTEP]
suffices β x' y' : β, x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p by
obtain hx | hy := hp.dvd_mul.1 pdvdxy <;> [skip; rw [And.comm]] <;> [skip; rw [mul_comm] at h pdvdxy ] <;>
apply this <;>
assumption
[GOAL]
x y p : β
hp : Prime p
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
β’ x = p β§ y = p
[PROOFSTEP]
obtain hx | hy := hp.dvd_mul.1 pdvdxy <;> [skip; rw [And.comm]] <;> [skip; rw [mul_comm] at h pdvdxy ]
[GOAL]
x y p : β
hp : Prime p
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
β’ x = p β§ y = p
[PROOFSTEP]
obtain hx | hy := hp.dvd_mul.1 pdvdxy <;> [skip; rw [And.comm]]
[GOAL]
x y p : β
hp : Prime p
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
β’ x = p β§ y = p
[PROOFSTEP]
obtain hx | hy := hp.dvd_mul.1 pdvdxy
[GOAL]
case inl
x y p : β
hp : Prime p
hxβ : x β 1
hy : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hx : p β£ x
β’ x = p β§ y = p
[PROOFSTEP]
skip
[GOAL]
case inr
x y p : β
hp : Prime p
hx : x β 1
hyβ : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hy : p β£ y
β’ x = p β§ y = p
[PROOFSTEP]
rw [And.comm]
[GOAL]
case inl
x y p : β
hp : Prime p
hxβ : x β 1
hy : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hx : p β£ x
β’ x = p β§ y = p
[PROOFSTEP]
skip
[GOAL]
case inr
x y p : β
hp : Prime p
hx : x β 1
hyβ : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hy : p β£ y
β’ y = p β§ x = p
[PROOFSTEP]
rw [mul_comm] at h pdvdxy
[GOAL]
case inl
x y p : β
hp : Prime p
hxβ : x β 1
hy : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hx : p β£ x
β’ x = p β§ y = p
[PROOFSTEP]
apply this
[GOAL]
case inr
x y p : β
hp : Prime p
hx : x β 1
hyβ : y β 1
h : y * x = p ^ 2
pdvdxy : p β£ y * x
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hy : p β£ y
β’ y = p β§ x = p
[PROOFSTEP]
apply this
[GOAL]
case inl.a
x y p : β
hp : Prime p
hxβ : x β 1
hy : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hx : p β£ x
β’ x β 1
[PROOFSTEP]
assumption
[GOAL]
case inl.a
x y p : β
hp : Prime p
hxβ : x β 1
hy : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hx : p β£ x
β’ y β 1
[PROOFSTEP]
assumption
[GOAL]
case inl.a
x y p : β
hp : Prime p
hxβ : x β 1
hy : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hx : p β£ x
β’ x * y = p ^ 2
[PROOFSTEP]
assumption
[GOAL]
case inl.a
x y p : β
hp : Prime p
hxβ : x β 1
hy : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hx : p β£ x
β’ p β£ x
[PROOFSTEP]
assumption
[GOAL]
case inr.a
x y p : β
hp : Prime p
hx : x β 1
hyβ : y β 1
h : y * x = p ^ 2
pdvdxy : p β£ y * x
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hy : p β£ y
β’ y β 1
[PROOFSTEP]
assumption
[GOAL]
case inr.a
x y p : β
hp : Prime p
hx : x β 1
hyβ : y β 1
h : y * x = p ^ 2
pdvdxy : p β£ y * x
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hy : p β£ y
β’ x β 1
[PROOFSTEP]
assumption
[GOAL]
case inr.a
x y p : β
hp : Prime p
hx : x β 1
hyβ : y β 1
h : y * x = p ^ 2
pdvdxy : p β£ y * x
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hy : p β£ y
β’ y * x = p ^ 2
[PROOFSTEP]
assumption
[GOAL]
case inr.a
x y p : β
hp : Prime p
hx : x β 1
hyβ : y β 1
h : y * x = p ^ 2
pdvdxy : p β£ y * x
this : β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
hy : p β£ y
β’ p β£ y
[PROOFSTEP]
assumption
[GOAL]
x y p : β
hp : Prime p
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
pdvdxy : p β£ x * y
β’ β (x' y' : β), x' β 1 β y' β 1 β x' * y' = p ^ 2 β p β£ x' β x' = p β§ y' = p
[PROOFSTEP]
rintro x y hx hy h β¨a, haβ©
[GOAL]
case intro
xβ yβ p : β
hp : Prime p
hxβ : xβ β 1
hyβ : yβ β 1
hβ : xβ * yβ = p ^ 2
pdvdxy : p β£ xβ * yβ
x y : β
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
a : β
ha : x = p * a
β’ x = p β§ y = p
[PROOFSTEP]
have : a β£ p := β¨y, by rwa [ha, sq, mul_assoc, mul_right_inj' hp.ne_zero, eq_comm] at h β©
[GOAL]
xβ yβ p : β
hp : Prime p
hxβ : xβ β 1
hyβ : yβ β 1
hβ : xβ * yβ = p ^ 2
pdvdxy : p β£ xβ * yβ
x y : β
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
a : β
ha : x = p * a
β’ p = a * y
[PROOFSTEP]
rwa [ha, sq, mul_assoc, mul_right_inj' hp.ne_zero, eq_comm] at h
[GOAL]
case intro
xβ yβ p : β
hp : Prime p
hxβ : xβ β 1
hyβ : yβ β 1
hβ : xβ * yβ = p ^ 2
pdvdxy : p β£ xβ * yβ
x y : β
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
a : β
ha : x = p * a
this : a β£ p
β’ x = p β§ y = p
[PROOFSTEP]
obtain ha1 | hap := (Nat.dvd_prime hp).mp βΉa β£ pβΊ
[GOAL]
case intro.inl
xβ yβ p : β
hp : Prime p
hxβ : xβ β 1
hyβ : yβ β 1
hβ : xβ * yβ = p ^ 2
pdvdxy : p β£ xβ * yβ
x y : β
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
a : β
ha : x = p * a
this : a β£ p
ha1 : a = 1
β’ x = p β§ y = p
[PROOFSTEP]
subst ha1
[GOAL]
case intro.inl
xβ yβ p : β
hp : Prime p
hxβ : xβ β 1
hyβ : yβ β 1
hβ : xβ * yβ = p ^ 2
pdvdxy : p β£ xβ * yβ
x y : β
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
ha : x = p * 1
this : 1 β£ p
β’ x = p β§ y = p
[PROOFSTEP]
rw [mul_one] at ha
[GOAL]
case intro.inl
xβ yβ p : β
hp : Prime p
hxβ : xβ β 1
hyβ : yβ β 1
hβ : xβ * yβ = p ^ 2
pdvdxy : p β£ xβ * yβ
x y : β
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
ha : x = p
this : 1 β£ p
β’ x = p β§ y = p
[PROOFSTEP]
subst ha
[GOAL]
case intro.inl
xβ yβ : β
hxβ : xβ β 1
hyβ : yβ β 1
x y : β
hx : x β 1
hy : y β 1
hp : Prime x
hβ : xβ * yβ = x ^ 2
pdvdxy : x β£ xβ * yβ
h : x * y = x ^ 2
this : 1 β£ x
β’ x = x β§ y = x
[PROOFSTEP]
simp only [sq, mul_right_inj' hp.ne_zero] at h
[GOAL]
case intro.inl
xβ yβ : β
hxβ : xβ β 1
hyβ : yβ β 1
x y : β
hx : x β 1
hy : y β 1
hp : Prime x
hβ : xβ * yβ = x ^ 2
pdvdxy : x β£ xβ * yβ
this : 1 β£ x
h : y = x
β’ x = x β§ y = x
[PROOFSTEP]
subst h
[GOAL]
case intro.inl
x yβ : β
hxβ : x β 1
hyβ : yβ β 1
y : β
hy hx : y β 1
hp : Prime y
h : x * yβ = y ^ 2
pdvdxy : y β£ x * yβ
this : 1 β£ y
β’ y = y β§ y = y
[PROOFSTEP]
exact β¨rfl, rflβ©
[GOAL]
case intro.inr
xβ yβ p : β
hp : Prime p
hxβ : xβ β 1
hyβ : yβ β 1
hβ : xβ * yβ = p ^ 2
pdvdxy : p β£ xβ * yβ
x y : β
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
a : β
ha : x = p * a
this : a β£ p
hap : a = p
β’ x = p β§ y = p
[PROOFSTEP]
refine' (hy ?_).elim
[GOAL]
case intro.inr
xβ yβ p : β
hp : Prime p
hxβ : xβ β 1
hyβ : yβ β 1
hβ : xβ * yβ = p ^ 2
pdvdxy : p β£ xβ * yβ
x y : β
hx : x β 1
hy : y β 1
h : x * y = p ^ 2
a : β
ha : x = p * a
this : a β£ p
hap : a = p
β’ y = 1
[PROOFSTEP]
subst hap
[GOAL]
case intro.inr
xβ yβ : β
hxβ : xβ β 1
hyβ : yβ β 1
x y : β
hx : x β 1
hy : y β 1
a : β
hp : Prime a
hβ : xβ * yβ = a ^ 2
pdvdxy : a β£ xβ * yβ
h : x * y = a ^ 2
ha : x = a * a
this : a β£ a
β’ y = 1
[PROOFSTEP]
subst ha
[GOAL]
case intro.inr
x yβ : β
hxβ : x β 1
hyβ : yβ β 1
y : β
hy : y β 1
a : β
hp : Prime a
hβ : x * yβ = a ^ 2
pdvdxy : a β£ x * yβ
this : a β£ a
hx : a * a β 1
h : a * a * y = a ^ 2
β’ y = 1
[PROOFSTEP]
rw [sq, Nat.mul_right_eq_self_iff (Nat.mul_pos hp.pos hp.pos : 0 < a * a)] at h
[GOAL]
case intro.inr
x yβ : β
hxβ : x β 1
hyβ : yβ β 1
y : β
hy : y β 1
a : β
hp : Prime a
hβ : x * yβ = a ^ 2
pdvdxy : a β£ x * yβ
this : a β£ a
hx : a * a β 1
h : y = 1
β’ y = 1
[PROOFSTEP]
exact h
[GOAL]
n p : β
hp : Prime p
β’ p β£ (n + 1)! β p β€ n + 1
[PROOFSTEP]
rw [factorial_succ, hp.dvd_mul, Prime.dvd_factorial hp]
[GOAL]
n p : β
hp : Prime p
β’ p β£ n + 1 β¨ p β€ n β p β€ n + 1
[PROOFSTEP]
exact
β¨fun h => h.elim (le_of_dvd (succ_pos _)) le_succ_of_le, fun h =>
(_root_.lt_or_eq_of_le h).elim (Or.inr β le_of_lt_succ) fun h => Or.inl <| by rw [h]β©
[GOAL]
n p : β
hp : Prime p
hβ : p β€ n + 1
h : p = n + 1
β’ p β£ n + 1
[PROOFSTEP]
rw [h]
[GOAL]
p : β
pp : Prime p
i : β
β’ coprime p i β¨ p β£ i
[PROOFSTEP]
rw [pp.dvd_iff_not_coprime]
[GOAL]
p : β
pp : Prime p
i : β
β’ coprime p i β¨ Β¬coprime p i
[PROOFSTEP]
apply em
[GOAL]
p : β
pp : Prime p
m i : β
β’ i β£ p ^ m β β k, k β€ m β§ i = p ^ k
[PROOFSTEP]
simp_rw [_root_.dvd_prime_pow (prime_iff.mp pp) m, associated_eq_eq]
[GOAL]
a p k : β
pp : Prime p
hβ : Β¬a β£ p ^ k
hβ : a β£ p ^ (k + 1)
β’ a = p ^ (k + 1)
[PROOFSTEP]
obtain β¨l, β¨h, rflβ©β© := (dvd_prime_pow pp).1 hβ
[GOAL]
case intro.intro
p k : β
pp : Prime p
l : β
h : l β€ k + 1
hβ : Β¬p ^ l β£ p ^ k
hβ : p ^ l β£ p ^ (k + 1)
β’ p ^ l = p ^ (k + 1)
[PROOFSTEP]
congr
[GOAL]
case intro.intro.e_a
p k : β
pp : Prime p
l : β
h : l β€ k + 1
hβ : Β¬p ^ l β£ p ^ k
hβ : p ^ l β£ p ^ (k + 1)
β’ l = k + 1
[PROOFSTEP]
exact le_antisymm h (not_le.1 ((not_congr (pow_dvd_pow_iff_le_right (Prime.one_lt pp))).1 hβ))
[GOAL]
β’ 0 β 1 β β p, Prime p β§ p β£ 0
[PROOFSTEP]
simpa using Exists.intro 2 Nat.prime_two
[GOAL]
β’ 1 β 1 β β p, Prime p β§ p β£ 1
[PROOFSTEP]
simp [Nat.not_prime_one]
[GOAL]
n : β
β’ n + 2 β 1 β β p, Prime p β§ p β£ n + 2
[PROOFSTEP]
let a := n + 2
[GOAL]
n : β
a : β := n + 2
β’ n + 2 β 1 β β p, Prime p β§ p β£ n + 2
[PROOFSTEP]
let ha : a β 1 := Nat.succ_succ_ne_one n
[GOAL]
n : β
a : β := n + 2
ha : a β 1 := succ_succ_ne_one n
β’ n + 2 β 1 β β p, Prime p β§ p β£ n + 2
[PROOFSTEP]
simp only [true_iff_iff, Ne.def, not_false_iff, ha]
[GOAL]
n : β
a : β := n + 2
ha : a β 1 := succ_succ_ne_one n
β’ β p, Prime p β§ p β£ n + 2
[PROOFSTEP]
exact β¨a.minFac, Nat.minFac_prime ha, a.minFac_dvdβ©
[GOAL]
n : β
β’ n = 1 β β (p : β), Prime p β Β¬p β£ n
[PROOFSTEP]
simpa using not_iff_not.mpr ne_one_iff_exists_prime_dvd
[GOAL]
p : β
p_prime : Prime p
m n k l : β
hpm : p ^ k β£ m
hpn : p ^ l β£ n
hpmn : p ^ (k + l + 1) β£ m * n
β’ p ^ (k + 1) β£ m β¨ p ^ (l + 1) β£ n
[PROOFSTEP]
have hpd : p ^ (k + l) * p β£ m * n :=
by
let hpmn' : p ^ (succ (k + l)) β£ m * n := hpmn
rwa [pow_succ'] at hpmn'
[GOAL]
p : β
p_prime : Prime p
m n k l : β
hpm : p ^ k β£ m
hpn : p ^ l β£ n
hpmn : p ^ (k + l + 1) β£ m * n
β’ p ^ (k + l) * p β£ m * n
[PROOFSTEP]
let hpmn' : p ^ (succ (k + l)) β£ m * n := hpmn
[GOAL]
p : β
p_prime : Prime p
m n k l : β
hpm : p ^ k β£ m
hpn : p ^ l β£ n
hpmn : p ^ (k + l + 1) β£ m * n
hpmn' : p ^ succ (k + l) β£ m * n := hpmn
β’ p ^ (k + l) * p β£ m * n
[PROOFSTEP]
rwa [pow_succ'] at hpmn'
[GOAL]
p : β
p_prime : Prime p
m n k l : β
hpm : p ^ k β£ m
hpn : p ^ l β£ n
hpmn : p ^ (k + l + 1) β£ m * n
hpd : p ^ (k + l) * p β£ m * n
β’ p ^ (k + 1) β£ m β¨ p ^ (l + 1) β£ n
[PROOFSTEP]
have hpd2 : p β£ m * n / p ^ (k + l) := dvd_div_of_mul_dvd hpd
[GOAL]
p : β
p_prime : Prime p
m n k l : β
hpm : p ^ k β£ m
hpn : p ^ l β£ n
hpmn : p ^ (k + l + 1) β£ m * n
hpd : p ^ (k + l) * p β£ m * n
hpd2 : p β£ m * n / p ^ (k + l)
β’ p ^ (k + 1) β£ m β¨ p ^ (l + 1) β£ n
[PROOFSTEP]
have hpd3 : p β£ m * n / (p ^ k * p ^ l) := by simpa [pow_add] using hpd2
[GOAL]
p : β
p_prime : Prime p
m n k l : β
hpm : p ^ k β£ m
hpn : p ^ l β£ n
hpmn : p ^ (k + l + 1) β£ m * n
hpd : p ^ (k + l) * p β£ m * n
hpd2 : p β£ m * n / p ^ (k + l)
β’ p β£ m * n / (p ^ k * p ^ l)
[PROOFSTEP]
simpa [pow_add] using hpd2
[GOAL]
p : β
p_prime : Prime p
m n k l : β
hpm : p ^ k β£ m
hpn : p ^ l β£ n
hpmn : p ^ (k + l + 1) β£ m * n
hpd : p ^ (k + l) * p β£ m * n
hpd2 : p β£ m * n / p ^ (k + l)
hpd3 : p β£ m * n / (p ^ k * p ^ l)
β’ p ^ (k + 1) β£ m β¨ p ^ (l + 1) β£ n
[PROOFSTEP]
have hpd4 : p β£ m / p ^ k * (n / p ^ l) := by simpa [Nat.div_mul_div_comm hpm hpn] using hpd3
[GOAL]
p : β
p_prime : Prime p
m n k l : β
hpm : p ^ k β£ m
hpn : p ^ l β£ n
hpmn : p ^ (k + l + 1) β£ m * n
hpd : p ^ (k + l) * p β£ m * n
hpd2 : p β£ m * n / p ^ (k + l)
hpd3 : p β£ m * n / (p ^ k * p ^ l)
β’ p β£ m / p ^ k * (n / p ^ l)
[PROOFSTEP]
simpa [Nat.div_mul_div_comm hpm hpn] using hpd3
[GOAL]
p : β
p_prime : Prime p
m n k l : β
hpm : p ^ k β£ m
hpn : p ^ l β£ n
hpmn : p ^ (k + l + 1) β£ m * n
hpd : p ^ (k + l) * p β£ m * n
hpd2 : p β£ m * n / p ^ (k + l)
hpd3 : p β£ m * n / (p ^ k * p ^ l)
hpd4 : p β£ m / p ^ k * (n / p ^ l)
β’ p ^ (k + 1) β£ m β¨ p ^ (l + 1) β£ n
[PROOFSTEP]
have hpd5 : p β£ m / p ^ k β¨ p β£ n / p ^ l := (Prime.dvd_mul p_prime).1 hpd4
[GOAL]
p : β
p_prime : Prime p
m n k l : β
hpm : p ^ k β£ m
hpn : p ^ l β£ n
hpmn : p ^ (k + l + 1) β£ m * n
hpd : p ^ (k + l) * p β£ m * n
hpd2 : p β£ m * n / p ^ (k + l)
hpd3 : p β£ m * n / (p ^ k * p ^ l)
hpd4 : p β£ m / p ^ k * (n / p ^ l)
hpd5 : p β£ m / p ^ k β¨ p β£ n / p ^ l
β’ p ^ (k + 1) β£ m β¨ p ^ (l + 1) β£ n
[PROOFSTEP]
suffices p ^ k * p β£ m β¨ p ^ l * p β£ n by rwa [_root_.pow_succ', _root_.pow_succ']
[GOAL]
p : β
p_prime : Prime p
m n k l : β
hpm : p ^ k β£ m
hpn : p ^ l β£ n
hpmn : p ^ (k + l + 1) β£ m * n
hpd : p ^ (k + l) * p β£ m * n
hpd2 : p β£ m * n / p ^ (k + l)
hpd3 : p β£ m * n / (p ^ k * p ^ l)
hpd4 : p β£ m / p ^ k * (n / p ^ l)
hpd5 : p β£ m / p ^ k β¨ p β£ n / p ^ l
this : p ^ k * p β£ m β¨ p ^ l * p β£ n
β’ p ^ (k + 1) β£ m β¨ p ^ (l + 1) β£ n
[PROOFSTEP]
rwa [_root_.pow_succ', _root_.pow_succ']
[GOAL]
p : β
p_prime : Prime p
m n k l : β
hpm : p ^ k β£ m
hpn : p ^ l β£ n
hpmn : p ^ (k + l + 1) β£ m * n
hpd : p ^ (k + l) * p β£ m * n
hpd2 : p β£ m * n / p ^ (k + l)
hpd3 : p β£ m * n / (p ^ k * p ^ l)
hpd4 : p β£ m / p ^ k * (n / p ^ l)
hpd5 : p β£ m / p ^ k β¨ p β£ n / p ^ l
β’ p ^ k * p β£ m β¨ p ^ l * p β£ n
[PROOFSTEP]
exact
hpd5.elim (fun h : p β£ m / p ^ k => Or.inl <| mul_dvd_of_dvd_div hpm h) fun h : p β£ n / p ^ l =>
Or.inr <| mul_dvd_of_dvd_div hpn h
[GOAL]
p : β
hp : Prime p
a b : β€
h : βp β£ a * b
β’ βp β£ a β¨ βp β£ b
[PROOFSTEP]
rw [β Int.dvd_natAbs, Int.coe_nat_dvd, Int.natAbs_mul, hp.dvd_mul] at h
[GOAL]
p : β
hp : Prime p
a b : β€
h : p β£ Int.natAbs a β¨ p β£ Int.natAbs b
β’ βp β£ a β¨ βp β£ b
[PROOFSTEP]
rwa [β Int.dvd_natAbs, Int.coe_nat_dvd, β Int.dvd_natAbs, Int.coe_nat_dvd]
[GOAL]
p : β
hp : _root_.Prime βp
h : p = 1
β’ False
[PROOFSTEP]
simp [h, not_prime_one] at hp
[GOAL]
p : β
hp : _root_.Prime βp
a b : β
β’ p β£ a * b β p β£ a β¨ p β£ b
[PROOFSTEP]
simpa only [Int.coe_nat_dvd, (Int.ofNat_mul _ _).symm] using hp.2.2 a b
| {"mathlib_filename": "Mathlib.Data.Nat.Prime", "llama_tokens": 26491} |
[GOAL]
x y : ββ₯0
β’ 0 ^ 2 = x β x = 0
[PROOFSTEP]
rw [eq_comm, sq, zero_mul]
[GOAL]
xβ y x : ββ₯0
β’ βsqrt x * βsqrt x = x
[PROOFSTEP]
rw [β sq, sq_sqrt]
[GOAL]
xβ y x : ββ₯0
β’ βsqrt (x * x) = x
[PROOFSTEP]
rw [β sq, sqrt_sq x]
[GOAL]
xβ yβ x y : ββ₯0
β’ βsqrt (x * y) = βsqrt x * βsqrt y
[PROOFSTEP]
rw [sqrt_eq_iff_sq_eq, mul_pow, sq_sqrt, sq_sqrt]
[GOAL]
x y : ββ₯0
β’ 0 < βsqrt x β 0 < x
[PROOFSTEP]
simp [pos_iff_ne_zero]
[GOAL]
f : CauSeq β abs
β’ 0 β€ sqrtAux f 0
[PROOFSTEP]
rw [sqrtAux, Rat.mkRat_eq, Rat.divInt_eq_div]
[GOAL]
f : CauSeq β abs
β’ 0 β€ ββ(Nat.sqrt (Int.toNat (βf 0).num)) / ββ(Nat.sqrt (βf 0).den)
[PROOFSTEP]
apply div_nonneg
[GOAL]
case ha
f : CauSeq β abs
β’ 0 β€ ββ(Nat.sqrt (Int.toNat (βf 0).num))
[PROOFSTEP]
exact Int.cast_nonneg.2 (Int.ofNat_nonneg _)
[GOAL]
case hb
f : CauSeq β abs
β’ 0 β€ ββ(Nat.sqrt (βf 0).den)
[PROOFSTEP]
exact Int.cast_nonneg.2 (Int.ofNat_nonneg _)
[GOAL]
xβ y : β
x : ββ₯0
β’ β(βNNReal.sqrt x) = sqrt βx
[PROOFSTEP]
rw [Real.sqrt, Real.toNNReal_coe]
[GOAL]
x y : β
h : x β€ 0
β’ sqrt x = 0
[PROOFSTEP]
simp [sqrt, Real.toNNReal_eq_zero.2 h]
[GOAL]
x y : β
h : 0 β€ x
β’ sqrt x * sqrt x = x
[PROOFSTEP]
rw [sqrt, β NNReal.coe_mul, NNReal.mul_self_sqrt, Real.coe_toNNReal _ h]
[GOAL]
x y : β
β’ sqrt x = y β y * y = x β§ 0 β€ y β¨ x < 0 β§ y = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
x y : β
β’ sqrt x = y β y * y = x β§ 0 β€ y β¨ x < 0 β§ y = 0
[PROOFSTEP]
rintro rfl
[GOAL]
case mp
x : β
β’ sqrt x * sqrt x = x β§ 0 β€ sqrt x β¨ x < 0 β§ sqrt x = 0
[PROOFSTEP]
cases' le_or_lt 0 x with hle hlt
[GOAL]
case mp.inl
x : β
hle : 0 β€ x
β’ sqrt x * sqrt x = x β§ 0 β€ sqrt x β¨ x < 0 β§ sqrt x = 0
[PROOFSTEP]
exact Or.inl β¨mul_self_sqrt hle, sqrt_nonneg xβ©
[GOAL]
case mp.inr
x : β
hlt : x < 0
β’ sqrt x * sqrt x = x β§ 0 β€ sqrt x β¨ x < 0 β§ sqrt x = 0
[PROOFSTEP]
exact Or.inr β¨hlt, sqrt_eq_zero_of_nonpos hlt.leβ©
[GOAL]
case mpr
x y : β
β’ y * y = x β§ 0 β€ y β¨ x < 0 β§ y = 0 β sqrt x = y
[PROOFSTEP]
rintro (β¨rfl, hyβ© | β¨hx, rflβ©)
[GOAL]
case mpr.inl.intro
y : β
hy : 0 β€ y
β’ sqrt (y * y) = y
case mpr.inr.intro x : β hx : x < 0 β’ sqrt x = 0
[PROOFSTEP]
exacts [sqrt_mul_self hy, sqrt_eq_zero_of_nonpos hx.le]
[GOAL]
x y : β
hx : 0 β€ x
hy : 0 β€ y
h : sqrt x = y
β’ y * y = x
[PROOFSTEP]
rw [β h, mul_self_sqrt hx]
[GOAL]
x y : β
hx : 0 β€ x
hy : 0 β€ y
h : y * y = x
β’ sqrt x = y
[PROOFSTEP]
rw [β h, sqrt_mul_self hy]
[GOAL]
x y : β
h : 0 < y
β’ sqrt x = y β y * y = x
[PROOFSTEP]
simp [sqrt_eq_cases, h.ne', h.le]
[GOAL]
x y : β
β’ 1 * 1 = x β x = 1
[PROOFSTEP]
rw [eq_comm, mul_one]
[GOAL]
x y : β
h : 0 β€ x
β’ sqrt x ^ 2 = x
[PROOFSTEP]
rw [sq, mul_self_sqrt h]
[GOAL]
x y : β
h : 0 β€ x
β’ sqrt (x ^ 2) = x
[PROOFSTEP]
rw [sq, sqrt_mul_self h]
[GOAL]
x y : β
hx : 0 β€ x
hy : 0 β€ y
β’ sqrt x = y β y ^ 2 = x
[PROOFSTEP]
rw [sq, sqrt_eq_iff_mul_self_eq hx hy]
[GOAL]
xβ y x : β
β’ sqrt (x * x) = |x|
[PROOFSTEP]
rw [β abs_mul_abs_self x, sqrt_mul_self (abs_nonneg _)]
[GOAL]
xβ y x : β
β’ sqrt (x ^ 2) = |x|
[PROOFSTEP]
rw [sq, sqrt_mul_self_eq_abs]
[GOAL]
x y : β
β’ sqrt 0 = 0
[PROOFSTEP]
simp [sqrt]
[GOAL]
x y : β
β’ sqrt 1 = 1
[PROOFSTEP]
simp [sqrt]
[GOAL]
x y : β
hy : 0 β€ y
β’ sqrt x β€ sqrt y β x β€ y
[PROOFSTEP]
rw [sqrt, sqrt, NNReal.coe_le_coe, NNReal.sqrt_le_sqrt_iff, Real.toNNReal_le_toNNReal_iff hy]
[GOAL]
x y : β
hy : 0 < y
β’ sqrt x < sqrt y β x < y
[PROOFSTEP]
rw [sqrt, sqrt, NNReal.coe_lt_coe, NNReal.sqrt_lt_sqrt_iff, toNNReal_lt_toNNReal_iff hy]
[GOAL]
x y : β
h : x β€ y
β’ sqrt x β€ sqrt y
[PROOFSTEP]
rw [sqrt, sqrt, NNReal.coe_le_coe, NNReal.sqrt_le_sqrt_iff]
[GOAL]
x y : β
h : x β€ y
β’ toNNReal x β€ toNNReal y
[PROOFSTEP]
exact toNNReal_le_toNNReal h
[GOAL]
x y : β
hy : 0 β€ y
β’ sqrt x β€ y β x β€ y ^ 2
[PROOFSTEP]
rw [sqrt, β Real.le_toNNReal_iff_coe_le hy, NNReal.sqrt_le_iff, sq, β Real.toNNReal_mul hy,
Real.toNNReal_le_toNNReal_iff (mul_self_nonneg y), sq]
[GOAL]
x y : β
β’ sqrt x β€ y β 0 β€ y β§ x β€ y ^ 2
[PROOFSTEP]
rw [β and_iff_right_of_imp fun h => (sqrt_nonneg x).trans h, and_congr_right_iff]
[GOAL]
x y : β
β’ 0 β€ y β (sqrt x β€ y β x β€ y ^ 2)
[PROOFSTEP]
exact sqrt_le_left
[GOAL]
x y : β
hx : 0 β€ x
hy : 0 β€ y
β’ sqrt x < y β x < y ^ 2
[PROOFSTEP]
rw [β sqrt_lt_sqrt_iff hx, sqrt_sq hy]
[GOAL]
x y : β
hy : 0 < y
β’ sqrt x < y β x < y ^ 2
[PROOFSTEP]
rw [β sqrt_lt_sqrt_iff_of_pos (pow_pos hy _), sqrt_sq hy.le]
[GOAL]
x y : β
h : x ^ 2 β€ y
β’ |x| β€ sqrt y
[PROOFSTEP]
rw [β sqrt_sq_eq_abs]
[GOAL]
x y : β
h : x ^ 2 β€ y
β’ sqrt (x ^ 2) β€ sqrt y
[PROOFSTEP]
exact sqrt_le_sqrt h
[GOAL]
x y : β
h : 0 β€ y
β’ x ^ 2 β€ y β -sqrt y β€ x β§ x β€ sqrt y
[PROOFSTEP]
constructor
[GOAL]
case mp
x y : β
h : 0 β€ y
β’ x ^ 2 β€ y β -sqrt y β€ x β§ x β€ sqrt y
[PROOFSTEP]
simpa only [abs_le] using abs_le_sqrt
[GOAL]
case mpr
x y : β
h : 0 β€ y
β’ -sqrt y β€ x β§ x β€ sqrt y β x ^ 2 β€ y
[PROOFSTEP]
rw [β abs_le, β sq_abs]
[GOAL]
case mpr
x y : β
h : 0 β€ y
β’ |x| β€ sqrt y β |x| ^ 2 β€ y
[PROOFSTEP]
exact (le_sqrt (abs_nonneg x) h).mp
[GOAL]
x y : β
hx : 0 β€ x
hy : 0 β€ y
β’ sqrt x = sqrt y β x = y
[PROOFSTEP]
simp [le_antisymm_iff, hx, hy]
[GOAL]
x y : β
h : 0 β€ x
β’ sqrt x = 0 β x = 0
[PROOFSTEP]
simpa using sqrt_inj h le_rfl
[GOAL]
x y : β
β’ sqrt x = 0 β x β€ 0
[PROOFSTEP]
rw [sqrt, NNReal.coe_eq_zero, NNReal.sqrt_eq_zero, Real.toNNReal_eq_zero]
[GOAL]
x y : β
h : 0 β€ x
β’ sqrt x β 0 β x β 0
[PROOFSTEP]
rw [not_iff_not, sqrt_eq_zero h]
[GOAL]
x y : β
β’ sqrt x β 0 β 0 < x
[PROOFSTEP]
rw [β not_le, not_iff_not, sqrt_eq_zero']
[GOAL]
x y : β
β’ sqrt x β€ 0 β sqrt x = 0
[PROOFSTEP]
simp [le_antisymm_iff, sqrt_nonneg]
[GOAL]
x : β
hx : 0 β€ x
y : β
β’ sqrt (x * y) = sqrt x * sqrt y
[PROOFSTEP]
simp_rw [sqrt, β NNReal.coe_mul, NNReal.coe_eq, Real.toNNReal_mul hx, NNReal.sqrt_mul]
[GOAL]
x y : β
hy : 0 β€ y
β’ sqrt (x * y) = sqrt x * sqrt y
[PROOFSTEP]
rw [mul_comm, sqrt_mul hy, mul_comm]
[GOAL]
x : β
β’ sqrt xβ»ΒΉ = (sqrt x)β»ΒΉ
[PROOFSTEP]
rw [sqrt, Real.toNNReal_inv, NNReal.sqrt_inv, NNReal.coe_inv, sqrt]
[GOAL]
x : β
hx : 0 β€ x
y : β
β’ sqrt (x / y) = sqrt x / sqrt y
[PROOFSTEP]
rw [division_def, sqrt_mul hx, sqrt_inv, division_def]
[GOAL]
x y : β
hy : 0 β€ y
β’ sqrt (x / y) = sqrt x / sqrt y
[PROOFSTEP]
rw [division_def, sqrt_mul' x (inv_nonneg.2 hy), sqrt_inv, division_def]
[GOAL]
x : β
β’ x / sqrt x = sqrt x
[PROOFSTEP]
cases' le_or_lt x 0 with h h
[GOAL]
case inl
x : β
h : x β€ 0
β’ x / sqrt x = sqrt x
[PROOFSTEP]
rw [sqrt_eq_zero'.mpr h, div_zero]
[GOAL]
case inr
x : β
h : 0 < x
β’ x / sqrt x = sqrt x
[PROOFSTEP]
rw [div_eq_iff (sqrt_ne_zero'.mpr h), mul_self_sqrt h.le]
[GOAL]
x : β
β’ sqrt x / x = 1 / sqrt x
[PROOFSTEP]
rw [β div_sqrt, one_div_div, div_sqrt]
[GOAL]
x : β
β’ sqrt x / x = (sqrt x)β»ΒΉ
[PROOFSTEP]
rw [sqrt_div_self', one_div]
[GOAL]
x y : β
hx : 0 β€ x
β’ x < sqrt y β x ^ 2 < y
[PROOFSTEP]
rw [β sqrt_lt_sqrt_iff (sq_nonneg _), sqrt_sq hx]
[GOAL]
x y : β
β’ x ^ 2 < y β -sqrt y < x β§ x < sqrt y
[PROOFSTEP]
rw [β abs_lt, β sq_abs, lt_sqrt (abs_nonneg _)]
[GOAL]
x y : β
h : sqrt x < y
β’ x < y ^ 2
[PROOFSTEP]
have hy := x.sqrt_nonneg.trans_lt h
[GOAL]
x y : β
h : sqrt x < y
hy : 0 < y
β’ x < y ^ 2
[PROOFSTEP]
rwa [β sqrt_lt_sqrt_iff_of_pos (sq_pos_of_pos hy), sqrt_sq hy.le]
[GOAL]
a : β
β’ β(Nat.sqrt a) β€ sqrt βa
[PROOFSTEP]
rw [Real.le_sqrt (Nat.cast_nonneg _) (Nat.cast_nonneg _)]
[GOAL]
a : β
β’ β(Nat.sqrt a) ^ 2 β€ βa
[PROOFSTEP]
norm_cast
[GOAL]
a : β
β’ Nat.sqrt a ^ 2 β€ a
[PROOFSTEP]
exact Nat.sqrt_le' a
[GOAL]
a : β
β’ sqrt βa β€ β(Nat.sqrt a) + 1
[PROOFSTEP]
rw [Real.sqrt_le_iff]
[GOAL]
a : β
β’ 0 β€ β(Nat.sqrt a) + 1 β§ βa β€ (β(Nat.sqrt a) + 1) ^ 2
[PROOFSTEP]
constructor
[GOAL]
case left
a : β
β’ 0 β€ β(Nat.sqrt a) + 1
[PROOFSTEP]
norm_cast
[GOAL]
case left
a : β
β’ 0 β€ Nat.sqrt a + 1
[PROOFSTEP]
apply zero_le
[GOAL]
case right
a : β
β’ βa β€ (β(Nat.sqrt a) + 1) ^ 2
[PROOFSTEP]
norm_cast
[GOAL]
case right
a : β
β’ a β€ (Nat.sqrt a + 1) ^ 2
[PROOFSTEP]
exact le_of_lt (Nat.lt_succ_sqrt' a)
[GOAL]
r : β
β’ 0 β€ r β β s, r = star s * s
[PROOFSTEP]
refine β¨fun hr => β¨sqrt r, (mul_self_sqrt hr).symmβ©, ?_β©
[GOAL]
r : β
β’ (β s, r = star s * s) β 0 β€ r
[PROOFSTEP]
rintro β¨s, rflβ©
[GOAL]
case intro
s : β
β’ 0 β€ star s * s
[PROOFSTEP]
exact mul_self_nonneg s
| {"mathlib_filename": "Mathlib.Data.Real.Sqrt", "llama_tokens": 4710} |
{"mathlib_filename": "Mathlib.RingTheory.Subring.Pointwise", "llama_tokens": 0} |
|
"[GOAL]\nx : β\nh : 0 < x\nβ’ sin x < x\n[PROOFSTEP]\ncases' lt_or_le 1 x with h' h'\n[GOAL]\ncas(...TRUNCATED) | "{\"mathlib_filename\": \"Mathlib.Analysis.SpecialFunctions.Trigonometric.Bounds\", \"llama_tokens\"(...TRUNCATED) |
{"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Linear", "llama_tokens": 0} |
|
"[GOAL]\nE : Type u_1\ni : SeminormedAddCommGroup E\nr : β\nw : E\nβ’ w β sphere 0 r β -w β(...TRUNCATED) | {"mathlib_filename": "Mathlib.Analysis.Normed.Group.BallSphere", "llama_tokens": 189} |
"[GOAL]\nF : Type uβ β Type uβ β Type uβ\ninstβΒΉ : Bifunctor F\ninstβ : LawfulBifunct(...TRUNCATED) | {"mathlib_filename": "Mathlib.Control.Bifunctor", "llama_tokens": 5802} |
{"mathlib_filename": "Mathlib.Tactic.SimpRw", "llama_tokens": 0} |
End of preview. Expand
in Dataset Viewer.
Proofsteps data from Proof-Pile-2
includes proofsteps for Lean and Isabelle
from datasets import load_dataset
ds = load_dataset(
"xu3kev/proof-pile-2-proofsteps"
)
ds
DatasetDict({
lean_proofsteps: Dataset({
features: ['text', 'meta'],
num_rows: 3432
})
isa_proofsteps: Dataset({
features: ['text', 'meta'],
num_rows: 260726
})
})
Quoting from appendix of LLEMMA: AN OPEN LANGUAGE MODEL FOR MATHEMATICS
B.1.2 LEAN PROOFSTEPS
We extract a dataset of (tactic state, next tactic) pairs from Mathlib 4 (mathlib Community, 2020)
using the lean-training-data (Morrison, 2023) tool. We use Mathlib 4 commit c779bd5,
which was created on August 20th 2023.
B.1.3 ISABELLE PROOFSTEPS
We construct a dataset of Isabelle proofs, building upon the PISA dataset Jiang et al. (2021). Isabelle
Proofsteps comprises proofs from the Archive of Formal Proofs and Isabelle Standard Library, scraped
with PISA Jiang et al. (2021). Each entry in the dataset includes the theorem statement, the proof
states and the proof steps, separated by specific tags. To maintain the integrity of evaluations using
the PISA test set, we decontaminate Isabelle Proofsteps by removing theorems whose names overlap
with those in the PISA test set. Although this approach results in a strict filtering β removing more
than 10,000 theorems although there are only 3600 in the PISA test set β we consider it acceptable in
order to mitigate data contamination. After filtering, Isabelle Proofsteps contains 251,000 theorems.
- Downloads last month
- 83