Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Languages:
code
Size:
10K - 100K
ArXiv:
Tags:
code
License:
dataset_info: | |
features: | |
- name: commit | |
dtype: string | |
- name: old_file | |
dtype: string | |
- name: new_file | |
dtype: string | |
- name: old_contents | |
dtype: string | |
- name: new_contents | |
dtype: string | |
- name: subject | |
dtype: string | |
- name: message | |
dtype: string | |
- name: lang | |
dtype: string | |
- name: license | |
dtype: string | |
- name: repos | |
dtype: string | |
- name: ndiff | |
dtype: string | |
- name: instruction | |
dtype: string | |
- name: content | |
dtype: string | |
splits: | |
- name: train | |
num_bytes: 113752028 | |
num_examples: 22602 | |
download_size: 48124127 | |
dataset_size: 113752028 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
task_categories: | |
- text-generation | |
tags: | |
- code | |
license: mit | |
pretty_name: CanItEdit | |
language: | |
- code | |
# EditPackFT | |
EditPackFT is a dataset built for training LLMs on the task of instructional code editing. The mail columns are: | |
1. `old_contents` the code before the edit | |
2. `instruction` the instruction to transform the `before` code into the `after` code | |
3. `new_contents` the code after the edit | |
4. `content` a pre-formatted training window that can be used to train an LLM with prompts in the format of: `<before><instruction><after>` | |
This dataset has been filtered from CommitPackFT. For more detail, [see our paper](https://arxiv.org/abs/2312.12450), and our [GitHub repository](https://github.com/nuprl/CanItEdit/tree/main/editpackft). | |
## Citation | |
If you use our work, please cite our paper as such: | |
``` | |
@inproceedings{cassano2023edit, | |
title={{Can It Edit? Evaluating the Ability of Large Language Models to Follow Code Editing Instructions}}, | |
author={Federico Cassano and Luisa Li and Akul Sethi and Noah Shinn and Abby Brennan-Jones and Anton Lozhkov and Carolyn Jane Anderson and Arjun Guha}, | |
booktitle={The First International Workshop on Large Language Model for Code}, | |
year={2024}, | |
url={https://arxiv.org/abs/2312.12450} | |
} | |
``` |