Datasets:

Modalities:
Text
Formats:
parquet
Languages:
code
ArXiv:
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 1,995 Bytes
b11a09e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b289a7
 
 
 
e9f1de2
 
 
 
b11a09e
9b289a7
 
 
3430665
9b289a7
3430665
9b289a7
 
b4f56e0
 
 
 
 
067b4c8
 
b4f56e0
067b4c8
 
 
b4f56e0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
dataset_info:
  features:
  - name: commit
    dtype: string
  - name: old_file
    dtype: string
  - name: new_file
    dtype: string
  - name: old_contents
    dtype: string
  - name: new_contents
    dtype: string
  - name: subject
    dtype: string
  - name: message
    dtype: string
  - name: lang
    dtype: string
  - name: license
    dtype: string
  - name: repos
    dtype: string
  - name: ndiff
    dtype: string
  - name: instruction
    dtype: string
  - name: content
    dtype: string
  splits:
  - name: train
    num_bytes: 113752028
    num_examples: 22602
  download_size: 48124127
  dataset_size: 113752028
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
task_categories:
- text-generation
tags:
- code
license: mit
pretty_name: CanItEdit
language:
- code
---

# EditPackFT
EditPackFT is a dataset built for training LLMs on the task of instructional code editing. The mail columns are:
1. `old_contents` the code before the edit
2. `instruction` the instruction to transform the `before` code into the `after` code
3. `new_contents` the code after the edit
4. `content` a pre-formatted training window that can be used to train an LLM with prompts in the format of: `<before><instruction><after>`

This dataset has been filtered from CommitPackFT. For more detail, [see our paper](https://arxiv.org/abs/2312.12450), and our [GitHub repository](https://github.com/nuprl/CanItEdit/tree/main/editpackft).

## Citation
If you use our work, please cite our paper as such:
```
@inproceedings{cassano2023edit,
      title={{Can It Edit? Evaluating the Ability of Large Language Models to Follow Code Editing Instructions}}, 
      author={Federico Cassano and Luisa Li and Akul Sethi and Noah Shinn and Abby Brennan-Jones and Anton Lozhkov and Carolyn Jane Anderson and Arjun Guha},
      booktitle={The First International Workshop on Large Language Model for Code},
      year={2024},
      url={https://arxiv.org/abs/2312.12450}
}
```