Datasets:

Tasks:
Other
Languages:
Chinese
ArXiv:
License:
CGL-Dataset-v2 / README.md
shunk031's picture
Merge branch 'main' of https://huggingface.co/datasets/creative-graphic-design/CGL-Dataset-v2
e926d96 verified
metadata
annotations_creators:
  - crowdsourced
language_creators:
  - found
language:
  - zh
license:
  - unknown
multilinguality:
  - monolingual
size_categories: []
source_datasets:
  - CGL-Dataset
task_categories:
  - other
task_ids: []
pretty_name: CGL-Dataset v2
tags:
  - graphic design
dataset_info:
  - config_name: default
    features:
      - name: image_id
        dtype: int64
      - name: file_name
        dtype: string
      - name: width
        dtype: int64
      - name: height
        dtype: int64
      - name: image
        dtype: image
      - name: annotations
        sequence:
          - name: annotation_id
            dtype: int64
          - name: area
            dtype: int64
          - name: bbox
            sequence: int64
          - name: category
            struct:
              - name: category_id
                dtype: int64
              - name: name
                dtype:
                  class_label:
                    names:
                      '0': logo
                      '1': text
                      '2': underlay
                      '3': embellishment
                      '4': highlighted text
              - name: supercategory
                dtype: string
          - name: category_id
            dtype: int64
          - name: image_id
            dtype: int64
          - name: iscrowd
            dtype: bool
          - name: segmentation
            dtype: image
      - name: text_annotations
        struct:
          - name: is_sample
            dtype: bool
          - name: image
            dtype: string
          - name: rotate
            dtype: float32
          - name: pin
            dtype: string
          - name: data
            sequence:
              - name: category_description
                dtype: string
              - name: points
                sequence:
                  - name: x
                    dtype: int64
                  - name: 'y'
                    dtype: int64
              - name: user_selected_value
                struct:
                  - name: name
                    dtype: string
          - name: product_detail_highlighted_word
            sequence: string
          - name: blc_text
            sequence: string
          - name: adv_sellpoint
            sequence: string
      - name: text_features
        struct:
          - name: num
            dtype: int64
          - name: pos
            sequence:
              sequence: int64
          - name: feats
            sequence:
              sequence:
                sequence: float32
    splits:
      - name: train
        num_bytes: 6825941140.344
        num_examples: 60548
      - name: test
        num_bytes: 261185824.48
        num_examples: 1035
    download_size: 7093932679
    dataset_size: 7087126964.823999
  - config_name: ralf-style
    features:
      - name: image_id
        dtype: int64
      - name: file_name
        dtype: string
      - name: width
        dtype: int64
      - name: height
        dtype: int64
      - name: original_poster
        dtype: image
      - name: inpainted_poster
        dtype: image
      - name: saliency_map
        dtype: image
      - name: saliency_map_sub
        dtype: image
      - name: annotations
        sequence:
          - name: annotation_id
            dtype: int64
          - name: area
            dtype: int64
          - name: bbox
            sequence: int64
          - name: category
            struct:
              - name: category_id
                dtype: int64
              - name: name
                dtype:
                  class_label:
                    names:
                      '0': logo
                      '1': text
                      '2': underlay
                      '3': embellishment
                      '4': highlighted text
              - name: supercategory
                dtype: string
          - name: category_id
            dtype: int64
          - name: image_id
            dtype: int64
          - name: iscrowd
            dtype: bool
          - name: segmentation
            dtype: image
      - name: text_annotations
        struct:
          - name: is_sample
            dtype: bool
          - name: image
            dtype: string
          - name: rotate
            dtype: float32
          - name: pin
            dtype: string
          - name: data
            sequence:
              - name: category_description
                dtype: string
              - name: points
                sequence:
                  - name: x
                    dtype: int64
                  - name: 'y'
                    dtype: int64
              - name: user_selected_value
                struct:
                  - name: name
                    dtype: string
          - name: product_detail_highlighted_word
            sequence: string
          - name: blc_text
            sequence: string
          - name: adv_sellpoint
            sequence: string
      - name: text_features
        struct:
          - name: num
            dtype: int64
          - name: pos
            sequence:
              sequence: int64
          - name: feats
            sequence:
              sequence:
                sequence: float32
    splits:
      - name: train
        num_bytes: 29188440681.841053
        num_examples: 48438
      - name: validation
        num_bytes: 3651199848.741473
        num_examples: 6055
      - name: test
        num_bytes: 3656104138.376473
        num_examples: 6055
      - name: no_annotation
        num_bytes: 307193567.355
        num_examples: 1035
    download_size: 37888671814
    dataset_size: 36802938236.314
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
  - config_name: ralf-style
    data_files:
      - split: train
        path: ralf-style/train-*
      - split: validation
        path: ralf-style/validation-*
      - split: test
        path: ralf-style/test-*
      - split: no_annotation
        path: ralf-style/no_annotation-*

Dataset Card for CGL-Dataset-v2

CI Sync HF

Table of Contents

Dataset Description

Dataset Summary

CGL-Dataset V2 is a dataset for the task of automatic graphic layout design of advertising posters, containing 60,548 training samples and 1035 testing samples. It is an extension of CGL-Dataset.

Supported Tasks and Leaderboards

[More Information Needed]

Languages

The language data in CGL-Dataset v2 is in Chinese (BCP-47 zh).

Dataset Structure

Data Instances

To use CGL-Dataset v2 dataset, you need to download RADM_dataset.tar.gz that includes the poster image, text and text features via JD Cloud or Google Drive. Then place the downloaded files in the following structure and specify its path.

/path/to/datasets
└── RADM_dataset.tar.gz
import datasets as ds

dataset = ds.load_dataset(
    path="shunk031/CGL-Dataset-v2",
    data_dir="/path/to/datasets/RADM_dataset.tar.gz",
    decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
    include_text_features=True, # True if RoBERTa-based text feature is to be loaded.
)

Data Fields

[More Information Needed]

Data Splits

[More Information Needed]

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

[More Information Needed]

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

[More Information Needed]

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

@inproceedings{li2023relation,
  title={Relation-Aware Diffusion Model for Controllable Poster Layout Generation},
  author={Li, Fengheng and Liu, An and Feng, Wei and Zhu, Honghe and Li, Yaoyu and Zhang, Zheng and Lv, Jingjing and Zhu, Xin and Shen, Junjie and Lin, Zhangang},
  booktitle={Proceedings of the 32nd ACM international conference on information & knowledge management},
  pages={1249--1258},
  year={2023}
}

Contributions

Thanks to @liuan0803 for creating this dataset.