annotations_creators:
- crowdsourced
language_creators:
- found
language:
- zh
license:
- unknown
multilinguality:
- monolingual
size_categories: []
source_datasets:
- CGL-Dataset
task_categories:
- other
task_ids: []
pretty_name: CGL-Dataset v2
tags:
- graphic design
dataset_info:
- config_name: default
features:
- name: image_id
dtype: int64
- name: file_name
dtype: string
- name: width
dtype: int64
- name: height
dtype: int64
- name: image
dtype: image
- name: annotations
sequence:
- name: annotation_id
dtype: int64
- name: area
dtype: int64
- name: bbox
sequence: int64
- name: category
struct:
- name: category_id
dtype: int64
- name: name
dtype:
class_label:
names:
'0': logo
'1': text
'2': underlay
'3': embellishment
'4': highlighted text
- name: supercategory
dtype: string
- name: category_id
dtype: int64
- name: image_id
dtype: int64
- name: iscrowd
dtype: bool
- name: segmentation
dtype: image
- name: text_annotations
struct:
- name: is_sample
dtype: bool
- name: image
dtype: string
- name: rotate
dtype: float32
- name: pin
dtype: string
- name: data
sequence:
- name: category_description
dtype: string
- name: points
sequence:
- name: x
dtype: int64
- name: 'y'
dtype: int64
- name: user_selected_value
struct:
- name: name
dtype: string
- name: product_detail_highlighted_word
sequence: string
- name: blc_text
sequence: string
- name: adv_sellpoint
sequence: string
- name: text_features
struct:
- name: num
dtype: int64
- name: pos
sequence:
sequence: int64
- name: feats
sequence:
sequence:
sequence: float32
splits:
- name: train
num_bytes: 6825941140.344
num_examples: 60548
- name: test
num_bytes: 261185824.48
num_examples: 1035
download_size: 7093932679
dataset_size: 7087126964.823999
- config_name: ralf-style
features:
- name: image_id
dtype: int64
- name: file_name
dtype: string
- name: width
dtype: int64
- name: height
dtype: int64
- name: original_poster
dtype: image
- name: inpainted_poster
dtype: image
- name: saliency_map
dtype: image
- name: saliency_map_sub
dtype: image
- name: annotations
sequence:
- name: annotation_id
dtype: int64
- name: area
dtype: int64
- name: bbox
sequence: int64
- name: category
struct:
- name: category_id
dtype: int64
- name: name
dtype:
class_label:
names:
'0': logo
'1': text
'2': underlay
'3': embellishment
'4': highlighted text
- name: supercategory
dtype: string
- name: category_id
dtype: int64
- name: image_id
dtype: int64
- name: iscrowd
dtype: bool
- name: segmentation
dtype: image
- name: text_annotations
struct:
- name: is_sample
dtype: bool
- name: image
dtype: string
- name: rotate
dtype: float32
- name: pin
dtype: string
- name: data
sequence:
- name: category_description
dtype: string
- name: points
sequence:
- name: x
dtype: int64
- name: 'y'
dtype: int64
- name: user_selected_value
struct:
- name: name
dtype: string
- name: product_detail_highlighted_word
sequence: string
- name: blc_text
sequence: string
- name: adv_sellpoint
sequence: string
- name: text_features
struct:
- name: num
dtype: int64
- name: pos
sequence:
sequence: int64
- name: feats
sequence:
sequence:
sequence: float32
splits:
- name: train
num_bytes: 29188440681.841053
num_examples: 48438
- name: validation
num_bytes: 3651199848.741473
num_examples: 6055
- name: test
num_bytes: 3656104138.376473
num_examples: 6055
- name: no_annotation
num_bytes: 307193567.355
num_examples: 1035
download_size: 37888671814
dataset_size: 36802938236.314
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: ralf-style
data_files:
- split: train
path: ralf-style/train-*
- split: validation
path: ralf-style/validation-*
- split: test
path: ralf-style/test-*
- split: no_annotation
path: ralf-style/no_annotation-*
Dataset Card for CGL-Dataset-v2
Table of Contents
- Dataset Card Creation Guide
Dataset Description
- Homepage: https://github.com/liuan0803/RADM
- Repository: https://github.com/shunk031/huggingface-datasets_CGL-Dataset-v2
- Paper (Preprint): https://arxiv.org/abs/2306.09086
- Paper (CIKM'23): https://dl.acm.org/doi/10.1145/3583780.3615028
Dataset Summary
CGL-Dataset V2 is a dataset for the task of automatic graphic layout design of advertising posters, containing 60,548 training samples and 1035 testing samples. It is an extension of CGL-Dataset.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
The language data in CGL-Dataset v2 is in Chinese (BCP-47 zh).
Dataset Structure
Data Instances
To use CGL-Dataset v2 dataset, you need to download RADM_dataset.tar.gz
that includes the poster image, text and text features via JD Cloud or Google Drive.
Then place the downloaded files in the following structure and specify its path.
/path/to/datasets
└── RADM_dataset.tar.gz
import datasets as ds
dataset = ds.load_dataset(
path="shunk031/CGL-Dataset-v2",
data_dir="/path/to/datasets/RADM_dataset.tar.gz",
decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
include_text_features=True, # True if RoBERTa-based text feature is to be loaded.
)
Data Fields
[More Information Needed]
Data Splits
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
[More Information Needed]
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
[More Information Needed]
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
@inproceedings{li2023relation,
title={Relation-Aware Diffusion Model for Controllable Poster Layout Generation},
author={Li, Fengheng and Liu, An and Feng, Wei and Zhu, Honghe and Li, Yaoyu and Zhang, Zheng and Lv, Jingjing and Zhu, Xin and Shen, Junjie and Lin, Zhangang},
booktitle={Proceedings of the 32nd ACM international conference on information & knowledge management},
pages={1249--1258},
year={2023}
}
Contributions
Thanks to @liuan0803 for creating this dataset.