File size: 18,294 Bytes
faf2154 ed21dcf faf2154 ed21dcf 59a47fb ed21dcf 54928f1 ed21dcf 54928f1 ed21dcf 1b11bf5 ed21dcf 54928f1 5988b9e f7ae0cc 5988b9e f7ae0cc 5988b9e f7ae0cc 5988b9e f7ae0cc ed21dcf 5988b9e faf2154 2dbfac6 faf2154 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- zh
license:
- unknown
multilinguality:
- monolingual
size_categories: []
source_datasets:
- CGL-Dataset
task_categories:
- other
task_ids: []
pretty_name: CGL-Dataset v2
tags:
- graphic design
dataset_info:
- config_name: default
features:
- name: image_id
dtype: int64
- name: file_name
dtype: string
- name: width
dtype: int64
- name: height
dtype: int64
- name: image
dtype: image
- name: annotations
sequence:
- name: annotation_id
dtype: int64
- name: area
dtype: int64
- name: bbox
sequence: int64
- name: category
struct:
- name: category_id
dtype: int64
- name: name
dtype:
class_label:
names:
'0': logo
'1': text
'2': underlay
'3': embellishment
'4': highlighted text
- name: supercategory
dtype: string
- name: category_id
dtype: int64
- name: image_id
dtype: int64
- name: iscrowd
dtype: bool
- name: segmentation
dtype: image
- name: text_annotations
struct:
- name: is_sample
dtype: bool
- name: image
dtype: string
- name: rotate
dtype: float32
- name: pin
dtype: string
- name: data
sequence:
- name: category_description
dtype: string
- name: points
sequence:
- name: x
dtype: int64
- name: y
dtype: int64
- name: user_selected_value
struct:
- name: name
dtype: string
- name: product_detail_highlighted_word
sequence: string
- name: blc_text
sequence: string
- name: adv_sellpoint
sequence: string
- name: text_features
struct:
- name: num
dtype: int64
- name: pos
sequence:
sequence: int64
- name: feats
sequence:
sequence:
sequence: float32
splits:
- name: train
num_bytes: 6825941140.344
num_examples: 60548
- name: test
num_bytes: 261185824.48
num_examples: 1035
download_size: 7093932679
dataset_size: 7087126964.823999
- config_name: ralf-style
features:
- name: image_id
dtype: int64
- name: file_name
dtype: string
- name: width
dtype: int64
- name: height
dtype: int64
- name: original_poster
dtype: image
- name: inpainted_poster
dtype: image
- name: saliency_map
dtype: image
- name: saliency_map_sub
dtype: image
- name: annotations
sequence:
- name: annotation_id
dtype: int64
- name: area
dtype: int64
- name: bbox
sequence: int64
- name: category
struct:
- name: category_id
dtype: int64
- name: name
dtype:
class_label:
names:
'0': logo
'1': text
'2': underlay
'3': embellishment
'4': highlighted text
- name: supercategory
dtype: string
- name: category_id
dtype: int64
- name: image_id
dtype: int64
- name: iscrowd
dtype: bool
- name: segmentation
dtype: image
- name: text_annotations
struct:
- name: is_sample
dtype: bool
- name: image
dtype: string
- name: rotate
dtype: float32
- name: pin
dtype: string
- name: data
sequence:
- name: category_description
dtype: string
- name: points
sequence:
- name: x
dtype: int64
- name: y
dtype: int64
- name: user_selected_value
struct:
- name: name
dtype: string
- name: product_detail_highlighted_word
sequence: string
- name: blc_text
sequence: string
- name: adv_sellpoint
sequence: string
- name: text_features
struct:
- name: num
dtype: int64
- name: pos
sequence:
sequence: int64
- name: feats
sequence:
sequence:
sequence: float32
splits:
- name: train
num_bytes: 29188440681.841053
num_examples: 48438
- name: validation
num_bytes: 3651199848.741473
num_examples: 6055
- name: test
num_bytes: 3656104138.376473
num_examples: 6055
- name: no_annotation
num_bytes: 307193567.355
num_examples: 1035
download_size: 37888671814
dataset_size: 36802938236.314
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: ralf-style
data_files:
- split: train
path: ralf-style/train-*
- split: validation
path: ralf-style/validation-*
- split: test
path: ralf-style/test-*
- split: no_annotation
path: ralf-style/no_annotation-*
---
# Dataset Card for CGL-Dataset-v2
[![CI](https://github.com/shunk031/huggingface-datasets_CGL-Dataset-v2/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_CGL-Dataset-v2/actions/workflows/ci.yaml)
[![Sync HF](https://github.com/shunk031/huggingface-datasets_CGL-Dataset-v2/actions/workflows/push_to_hub.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_CGL-Dataset-v2/actions/workflows/push_to_hub.yaml)
## Table of Contents
- [Dataset Card Creation Guide](#dataset-card-creation-guide)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/liuan0803/RADM
- **Repository:** https://github.com/shunk031/huggingface-datasets_CGL-Dataset-v2
- **Paper (Preprint):** https://arxiv.org/abs/2306.09086
- **Paper (CIKM'23):** https://dl.acm.org/doi/10.1145/3583780.3615028
### Dataset Summary
CGL-Dataset V2 is a dataset for the task of automatic graphic layout design of advertising posters, containing 60,548 training samples and 1035 testing samples. It is an extension of CGL-Dataset.
### Supported Tasks and Leaderboards
[More Information Needed]
<!-- For each of the tasks tagged for this dataset, give a brief description of the tag, metrics, and suggested models (with a link to their HuggingFace implementation if available). Give a similar description of tasks that were not covered by the structured tag set (repace the `task-category-tag` with an appropriate `other:other-task-name`).
- `task-category-tag`: The dataset can be used to train a model for [TASK NAME], which consists in [TASK DESCRIPTION]. Success on this task is typically measured by achieving a *high/low* [metric name](https://huggingface.co/metrics/metric_name). The ([model name](https://huggingface.co/model_name) or [model class](https://huggingface.co/transformers/model_doc/model_class.html)) model currently achieves the following score. *[IF A LEADERBOARD IS AVAILABLE]:* This task has an active leaderboard which can be found at [leaderboard url]() and ranks models based on [metric name](https://huggingface.co/metrics/metric_name) while also reporting [other metric name](https://huggingface.co/metrics/other_metric_name). -->
### Languages
The language data in CGL-Dataset v2 is in Chinese ([BCP-47 zh](https://www.rfc-editor.org/info/bcp47)).
## Dataset Structure
### Data Instances
To use CGL-Dataset v2 dataset, you need to download `RADM_dataset.tar.gz` that includes the poster image, text and text features via [JD Cloud](https://3.cn/10-dQKDKG) or [Google Drive](https://drive.google.com/file/d/1ezOzR7MX3MFFIfWgJmmEaqXn3iDFp2si/view?usp=sharing).
Then place the downloaded files in the following structure and specify its path.
```shell
/path/to/datasets
└── RADM_dataset.tar.gz
```
```python
import datasets as ds
dataset = ds.load_dataset(
path="shunk031/CGL-Dataset-v2",
data_dir="/path/to/datasets/RADM_dataset.tar.gz",
decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
include_text_features=True, # True if RoBERTa-based text feature is to be loaded.
)
```
### Data Fields
[More Information Needed]
<!-- List and describe the fields present in the dataset. Mention their data type, and whether they are used as input or output in any of the tasks the dataset currently supports. If the data has span indices, describe their attributes, such as whether they are at the character level or word level, whether they are contiguous or not, etc. If the datasets contains example IDs, state whether they have an inherent meaning, such as a mapping to other datasets or pointing to relationships between data points.
- `example_field`: description of `example_field`
Note that the descriptions can be initialized with the **Show Markdown Data Fields** output of the [Datasets Tagging app](https://huggingface.co/spaces/huggingface/datasets-tagging), you will then only need to refine the generated descriptions. -->
### Data Splits
[More Information Needed]
<!-- Describe and name the splits in the dataset if there are more than one.
Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g. if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here.
Provide the sizes of each split. As appropriate, provide any descriptive statistics for the features, such as average length. For example:
| | train | validation | test |
|-------------------------|------:|-----------:|-----:|
| Input Sentences | | | |
| Average Sentence Length | | | | -->
## Dataset Creation
### Curation Rationale
[More Information Needed]
<!-- What need motivated the creation of this dataset? What are some of the reasons underlying the major choices involved in putting it together? -->
### Source Data
[More Information Needed]
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences,...) -->
#### Initial Data Collection and Normalization
[More Information Needed]
<!-- Describe the data collection process. Describe any criteria for data selection or filtering. List any key words or search terms used. If possible, include runtime information for the collection process.
If data was collected from other pre-existing datasets, link to source here and to their [Hugging Face version](https://huggingface.co/datasets/dataset_name).
If the data was modified or normalized after being collected (e.g. if the data is word-tokenized), describe the process and the tools used. -->
#### Who are the source language producers?
[More Information Needed]
<!-- State whether the data was produced by humans or machine generated. Describe the people or systems who originally created the data.
If available, include self-reported demographic or identity information for the source data creators, but avoid inferring this information. Instead state that this information is unknown. See [Larson 2017](https://www.aclweb.org/anthology/W17-1601.pdf) for using identity categories as a variables, particularly gender.
Describe the conditions under which the data was created (for example, if the producers were crowdworkers, state what platform was used, or if the data was found, what website the data was found on). If compensation was provided, include that information here.
Describe other people represented or mentioned in the data. Where possible, link to references for the information. -->
### Annotations
[More Information Needed]
<!-- If the dataset contains annotations which are not part of the initial data collection, describe them in the following paragraphs. -->
#### Annotation process
[More Information Needed]
<!-- If applicable, describe the annotation process and any tools used, or state otherwise. Describe the amount of data annotated, if not all. Describe or reference annotation guidelines provided to the annotators. If available, provide interannotator statistics. Describe any annotation validation processes. -->
#### Who are the annotators?
[More Information Needed]
<!-- If annotations were collected for the source data (such as class labels or syntactic parses), state whether the annotations were produced by humans or machine generated.
Describe the people or systems who originally created the annotations and their selection criteria if applicable.
If available, include self-reported demographic or identity information for the annotators, but avoid inferring this information. Instead state that this information is unknown. See [Larson 2017](https://www.aclweb.org/anthology/W17-1601.pdf) for using identity categories as a variables, particularly gender.
Describe the conditions under which the data was annotated (for example, if the annotators were crowdworkers, state what platform was used, or if the data was found, what website the data was found on). If compensation was provided, include that information here. -->
### Personal and Sensitive Information
[More Information Needed]
<!-- State whether the dataset uses identity categories and, if so, how the information is used. Describe where this information comes from (i.e. self-reporting, collecting from profiles, inferring, etc.). See [Larson 2017](https://www.aclweb.org/anthology/W17-1601.pdf) for using identity categories as a variables, particularly gender. State whether the data is linked to individuals and whether those individuals can be identified in the dataset, either directly or indirectly (i.e., in combination with other data).
State whether the dataset contains other data that might be considered sensitive (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history).
If efforts were made to anonymize the data, describe the anonymization process. -->
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
<!-- Please discuss some of the ways you believe the use of this dataset will impact society.
The statement should include both positive outlooks, such as outlining how technologies developed through its use may improve people's lives, and discuss the accompanying risks. These risks may range from making important decisions more opaque to people who are affected by the technology, to reinforcing existing harmful biases (whose specifics should be discussed in the next section), among other considerations.
Also describe in this section if the proposed dataset contains a low-resource or under-represented language. If this is the case or if this task has any impact on underserved communities, please elaborate here. -->
### Discussion of Biases
[More Information Needed]
<!-- Provide descriptions of specific biases that are likely to be reflected in the data, and state whether any steps were taken to reduce their impact.
For Wikipedia text, see for example [Dinan et al 2020 on biases in Wikipedia (esp. Table 1)](https://arxiv.org/abs/2005.00614), or [Blodgett et al 2020](https://www.aclweb.org/anthology/2020.acl-main.485/) for a more general discussion of the topic.
If analyses have been run quantifying these biases, please add brief summaries and links to the studies here. -->
### Other Known Limitations
[More Information Needed]
<!-- If studies of the datasets have outlined other limitations of the dataset, such as annotation artifacts, please outline and cite them here. -->
## Additional Information
### Dataset Curators
[More Information Needed]
<!-- List the people involved in collecting the dataset and their affiliation(s). If funding information is known, include it here. -->
### Licensing Information
[More Information Needed]
<!-- Provide the license and link to the license webpage if available. -->
### Citation Information
<!-- Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example:
```
@article{article_id,
author = {Author List},
title = {Dataset Paper Title},
journal = {Publication Venue},
year = {2525}
}
```
If the dataset has a [DOI](https://www.doi.org/), please provide it here. -->
```bibtex
@inproceedings{li2023relation,
title={Relation-Aware Diffusion Model for Controllable Poster Layout Generation},
author={Li, Fengheng and Liu, An and Feng, Wei and Zhu, Honghe and Li, Yaoyu and Zhang, Zheng and Lv, Jingjing and Zhu, Xin and Shen, Junjie and Lin, Zhangang},
booktitle={Proceedings of the 32nd ACM international conference on information & knowledge management},
pages={1249--1258},
year={2023}
}
```
### Contributions
Thanks to [@liuan0803](https://github.com/liuan0803) for creating this dataset.
|