unprocessed
stringlengths
1.83k
2.89k
processed
stringclasses
6 values
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Experimentation using isoforms of @CHEMICAL$ engineered to have @GENE$ substitutions in the IgG1 C(H)2 domain that impact Fc gamma R binding indicate that alefacept mediates cognate interactions between cells expressing human CD2 and CD16 to activate cells, e.g., increase extracellular signal-regulated kinase phosphorylation, up-regulate cell surface expression of the activation marker CD25, and induce release of granzyme B. In the systems used, this signaling is shown to require binding to CD2 and CD16 and be mediated through CD16, but not CD2.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Experimentation using isoforms of alefacept engineered to have @CHEMICAL$ substitutions in the IgG1 C(H)2 domain that impact Fc gamma R binding indicate that @GENE$ mediates cognate interactions between cells expressing human CD2 and CD16 to activate cells, e.g., increase extracellular signal-regulated kinase phosphorylation, up-regulate cell surface expression of the activation marker CD25, and induce release of granzyme B. In the systems used, this signaling is shown to require binding to CD2 and CD16 and be mediated through CD16, but not CD2.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Experimentation using isoforms of alefacept engineered to have @CHEMICAL$ substitutions in the IgG1 C(H)2 domain that impact Fc gamma R binding indicate that alefacept mediates cognate interactions between cells expressing @GENE$ and CD16 to activate cells, e.g., increase extracellular signal-regulated kinase phosphorylation, up-regulate cell surface expression of the activation marker CD25, and induce release of granzyme B. In the systems used, this signaling is shown to require binding to CD2 and CD16 and be mediated through CD16, but not CD2.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Experimentation using isoforms of alefacept engineered to have @CHEMICAL$ substitutions in the IgG1 C(H)2 domain that impact Fc gamma R binding indicate that alefacept mediates cognate interactions between cells expressing human CD2 and CD16 to activate cells, e.g., increase extracellular signal-regulated kinase phosphorylation, up-regulate cell surface expression of the activation marker @GENE$, and induce release of granzyme B. In the systems used, this signaling is shown to require binding to CD2 and CD16 and be mediated through CD16, but not CD2.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Experimentation using isoforms of alefacept engineered to have @CHEMICAL$ substitutions in the IgG1 C(H)2 domain that impact Fc gamma R binding indicate that alefacept mediates cognate interactions between cells expressing human CD2 and CD16 to activate cells, e.g., increase extracellular signal-regulated kinase phosphorylation, up-regulate cell surface expression of the activation marker CD25, and induce release of @GENE$. In the systems used, this signaling is shown to require binding to CD2 and CD16 and be mediated through CD16, but not CD2.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Experimentation using isoforms of alefacept engineered to have @CHEMICAL$ substitutions in the IgG1 C(H)2 domain that impact Fc gamma R binding indicate that alefacept mediates cognate interactions between cells expressing human CD2 and CD16 to activate cells, e.g., increase extracellular signal-regulated kinase phosphorylation, up-regulate cell surface expression of the activation marker CD25, and induce release of granzyme B. In the systems used, this signaling is shown to require binding to @GENE$ and CD16 and be mediated through CD16, but not CD2.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Thalidomide in multiple myeloma. @CHEMICAL$--removed from widespread clinical use by 1962 because of severe teratogenicity--has anti-angiogenic and immunomodulatory effects, including the inhibition of @GENE$.
CPR:4
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ in multiple myeloma. Thalidomide--removed from widespread clinical use by 1962 because of severe teratogenicity--has anti-angiogenic and immunomodulatory effects, including the inhibition of @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: As a prodrug @CHEMICAL$ is completely converted to its active metabolite A 77 1726 (M1) which blocks the @GENE$, a key enzyme of the pyrimidine de novo synthesis.
CPR:4
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: As a prodrug leflunomide is completely converted to its active metabolite @CHEMICAL$ (M1) which blocks the @GENE$, a key enzyme of the pyrimidine de novo synthesis.
CPR:4
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: As a prodrug leflunomide is completely converted to its active metabolite A 77 1726 (M1) which blocks the @CHEM-GENE$, a key enzyme of the pyrimidine de novo synthesis.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: As a prodrug leflunomide is completely converted to its active metabolite A 77 1726 (M1) which blocks the @CHEMICAL$, a key enzyme of the @GENE$ de novo synthesis.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Endocrine therapy is first-line therapy for patients with @CHEM-GENE$-positive or progesterone receptor-positive metastatic breast cancer.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Endocrine therapy is first-line therapy for patients with @CHEMICAL$ receptor-positive or @GENE$-positive metastatic breast cancer.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Endocrine therapy is first-line therapy for patients with @CHEMICAL$-positive or @GENE$ receptor-positive metastatic breast cancer.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Endocrine therapy is first-line therapy for patients with estrogen receptor-positive or @CHEM-GENE$-positive metastatic breast cancer.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Commonly used endocrine therapies are @CHEMICAL$, megestrol acetate, and @GENE$ inhibitors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Commonly used endocrine therapies are tamoxifen, @CHEMICAL$, and @GENE$ inhibitors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The @CHEMICAL$ inhibitors are currently used as second-line therapy after @GENE$ failure.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: A recent study showed that @CHEMICAL$, an @GENE$ inhibitor, is as effective or even superior to tamoxifen when used as a first-line therapy.
CPR:4
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: A recent study showed that anastrozole, an @CHEMICAL$ inhibitor, is as effective or even superior to @GENE$ when used as a first-line therapy.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: A new class of drug, the @CHEM-GENE$ downregulators, has been developed.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$, the first agent in this new class, not only induces the degradation of the @GENE$ but also is an estrogen antagonist; further, its lack of agonist activity provides a better safety profile.
CPR:4
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Fulvestrant, the first agent in this new class, not only induces the degradation of the @CHEM-GENE$ but also is an estrogen antagonist; further, its lack of agonist activity provides a better safety profile.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Fulvestrant, the first agent in this new class, not only induces the degradation of the @CHEMICAL$ but also is an @GENE$ antagonist; further, its lack of agonist activity provides a better safety profile.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: We recently identified @CHEM-GENE$, the rate-limiting enzyme of the mevalonate pathway, as a potential therapeutic target of the head and neck squamous cell carcinomas (HNSCC) and cervical carcinomas (CC).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: We recently identified @CHEM-GENE$, the rate-limiting enzyme of the mevalonate pathway, as a potential therapeutic target of the head and neck squamous cell carcinomas (HNSCC) and cervical carcinomas (CC).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$, a specific inhibitor of @GENE$, induces a pronounced apoptotic response in a specific subset of tumor types, including HNSCC and CC.
CPR:4
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Lovastatin, a specific inhibitor of @CHEM-GENE$, induces a pronounced apoptotic response in a specific subset of tumor types, including HNSCC and CC.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included @CHEM-GENE$/acyl-CoA-binding protein, the activated transcription factor 4 and rhoA. Because the biosynthesis of mevalonate leads to its incorporation into more than a dozen classes of end products, their role in lovastatin-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included @CHEMICAL$-binding inhibitor/@GENE$ the activated transcription factor 4 and rhoA. Because the biosynthesis of mevalonate leads to its incorporation into more than a dozen classes of end products, their role in lovastatin-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included @CHEMICAL$-binding inhibitor/acyl-CoA-binding protein, the @GENE$ and rhoA. Because the biosynthesis of mevalonate leads to its incorporation into more than a dozen classes of end products, their role in lovastatin-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included @CHEMICAL$-binding inhibitor/acyl-CoA-binding protein, the activated transcription factor 4 and @GENE$. Because the biosynthesis of mevalonate leads to its incorporation into more than a dozen classes of end products, their role in lovastatin-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included @CHEMICAL$/@GENE$-binding protein, the activated transcription factor 4 and rhoA. Because the biosynthesis of mevalonate leads to its incorporation into more than a dozen classes of end products, their role in lovastatin-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included diazepam-binding inhibitor/@CHEM-GENE$ the activated transcription factor 4 and rhoA. Because the biosynthesis of mevalonate leads to its incorporation into more than a dozen classes of end products, their role in lovastatin-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included diazepam-binding inhibitor/@CHEMICAL$-binding protein, the @GENE$ and rhoA. Because the biosynthesis of mevalonate leads to its incorporation into more than a dozen classes of end products, their role in lovastatin-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included diazepam-binding inhibitor/@CHEMICAL$-binding protein, the activated transcription factor 4 and @GENE$. Because the biosynthesis of mevalonate leads to its incorporation into more than a dozen classes of end products, their role in lovastatin-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included @CHEMICAL$/acyl-CoA-binding protein, the activated transcription factor 4 and rhoA. Because the biosynthesis of @GENE$ leads to its incorporation into more than a dozen classes of end products, their role in lovastatin-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included diazepam-binding inhibitor/@CHEMICAL$ the activated transcription factor 4 and rhoA. Because the biosynthesis of @GENE$ leads to its incorporation into more than a dozen classes of end products, their role in lovastatin-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included diazepam-binding inhibitor/acyl-CoA-binding protein, the @CHEMICAL$ and rhoA. Because the biosynthesis of @GENE$ leads to its incorporation into more than a dozen classes of end products, their role in lovastatin-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included diazepam-binding inhibitor/acyl-CoA-binding protein, the activated transcription factor 4 and @CHEMICAL$. Because the biosynthesis of @GENE$ leads to its incorporation into more than a dozen classes of end products, their role in lovastatin-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included @CHEMICAL$/acyl-CoA-binding protein, the activated transcription factor 4 and rhoA. Because the biosynthesis of mevalonate leads to its incorporation into more than a dozen classes of end products, their role in @GENE$-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included diazepam-binding inhibitor/@CHEMICAL$ the activated transcription factor 4 and rhoA. Because the biosynthesis of mevalonate leads to its incorporation into more than a dozen classes of end products, their role in @GENE$-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included diazepam-binding inhibitor/acyl-CoA-binding protein, the @CHEMICAL$ and rhoA. Because the biosynthesis of mevalonate leads to its incorporation into more than a dozen classes of end products, their role in @GENE$-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These included diazepam-binding inhibitor/acyl-CoA-binding protein, the activated transcription factor 4 and @CHEMICAL$. Because the biosynthesis of mevalonate leads to its incorporation into more than a dozen classes of end products, their role in @GENE$-induced apoptosis was also evaluated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Because @CHEMICAL$ requires @GENE$ for its function, this links the microarray and biochemical data and identifies rhoA as a potential mediator of the anticancer properties of lovastatin.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Because rhoA requires @CHEMICAL$ for its function, this links the microarray and biochemical data and identifies @GENE$ as a potential mediator of the anticancer properties of lovastatin.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Because @CHEMICAL$ requires GGPP for its function, this links the microarray and biochemical data and identifies rhoA as a potential mediator of the anticancer properties of @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Because rhoA requires GGPP for its function, this links the microarray and biochemical data and identifies @CHEMICAL$ as a potential mediator of the anticancer properties of @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Regulation of @CHEM-GENE$ abundance by catecholamines and desipramine in vivo.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Regulation of @CHEMICAL$ abundance by @GENE$ and desipramine in vivo.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Regulation of @CHEMICAL$ abundance by catecholamines and @GENE$ in vivo.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The norepinephrine transporter (NET) regulates @CHEMICAL$ signaling by controlling the availability of synaptic @GENE$ (NE), and it is a direct target for some classes of antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The norepinephrine transporter (@CHEMICAL$) regulates adrenoreceptor signaling by controlling the availability of synaptic @GENE$ (NE), and it is a direct target for some classes of antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The @CHEMICAL$ (NET) regulates adrenoreceptor signaling by controlling the availability of synaptic @GENE$ (NE), and it is a direct target for some classes of antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The norepinephrine transporter (NET) regulates @CHEMICAL$ signaling by controlling the availability of synaptic norepinephrine (@GENE$), and it is a direct target for some classes of antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The norepinephrine transporter (@CHEMICAL$) regulates adrenoreceptor signaling by controlling the availability of synaptic norepinephrine (@GENE$), and it is a direct target for some classes of antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The @CHEMICAL$ (NET) regulates adrenoreceptor signaling by controlling the availability of synaptic norepinephrine (@GENE$), and it is a direct target for some classes of antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The @CHEMICAL$ transporter (NET) regulates @GENE$ signaling by controlling the availability of synaptic norepinephrine (NE), and it is a direct target for some classes of antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The @CHEMICAL$ transporter (@GENE$) regulates adrenoreceptor signaling by controlling the availability of synaptic norepinephrine (NE), and it is a direct target for some classes of antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The @CHEM-GENE$ (NET) regulates adrenoreceptor signaling by controlling the availability of synaptic norepinephrine (NE), and it is a direct target for some classes of antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ levels are normal in dopamine beta-hydroxylase knockout (Dbh -/-) mice that lack @GENE$, demonstrating that the NET does not require endogenous NE for appropriate regulation under physiological conditions.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: NET levels are normal in @CHEMICAL$ knockout (Dbh -/-) mice that lack @GENE$, demonstrating that the NET does not require endogenous NE for appropriate regulation under physiological conditions.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: NET levels are normal in dopamine beta-hydroxylase knockout (@CHEMICAL$ -/-) mice that lack @GENE$, demonstrating that the NET does not require endogenous NE for appropriate regulation under physiological conditions.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: NET levels are normal in dopamine beta-hydroxylase knockout (Dbh -/-) mice that lack @CHEMICAL$, demonstrating that the @GENE$ does not require endogenous NE for appropriate regulation under physiological conditions.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ levels are normal in dopamine beta-hydroxylase knockout (Dbh -/-) mice that lack NE, demonstrating that the NET does not require endogenous @GENE$ for appropriate regulation under physiological conditions.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: NET levels are normal in @CHEMICAL$ knockout (Dbh -/-) mice that lack NE, demonstrating that the NET does not require endogenous @GENE$ for appropriate regulation under physiological conditions.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: NET levels are normal in dopamine beta-hydroxylase knockout (@CHEMICAL$ -/-) mice that lack NE, demonstrating that the NET does not require endogenous @GENE$ for appropriate regulation under physiological conditions.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: NET levels are normal in dopamine beta-hydroxylase knockout (Dbh -/-) mice that lack NE, demonstrating that the @CHEMICAL$ does not require endogenous @GENE$ for appropriate regulation under physiological conditions.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, @CHEMICAL$ knockout (Th -/-) mice that lack both NE and dopamine (DA) have reduced levels of NET, suggesting that it is down-regulated by a complete absence of catecholamines and not @GENE$ per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, tyrosine hydroxylase knockout (@CHEMICAL$ -/-) mice that lack both NE and dopamine (DA) have reduced levels of NET, suggesting that it is down-regulated by a complete absence of catecholamines and not @GENE$ per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, tyrosine hydroxylase knockout (Th -/-) mice that lack both NE and dopamine (DA) have reduced levels of @CHEMICAL$, suggesting that it is down-regulated by a complete absence of catecholamines and not @GENE$ per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, @CHEMICAL$ knockout (Th -/-) mice that lack both @GENE$ and dopamine (DA) have reduced levels of NET, suggesting that it is down-regulated by a complete absence of catecholamines and not NE per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, tyrosine hydroxylase knockout (@CHEMICAL$ -/-) mice that lack both @GENE$ and dopamine (DA) have reduced levels of NET, suggesting that it is down-regulated by a complete absence of catecholamines and not NE per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, tyrosine hydroxylase knockout (Th -/-) mice that lack both @CHEMICAL$ and dopamine (DA) have reduced levels of @GENE$, suggesting that it is down-regulated by a complete absence of catecholamines and not NE per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, @CHEMICAL$ knockout (Th -/-) mice that lack both NE and @GENE$ (DA) have reduced levels of NET, suggesting that it is down-regulated by a complete absence of catecholamines and not NE per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, tyrosine hydroxylase knockout (@CHEMICAL$ -/-) mice that lack both NE and @GENE$ (DA) have reduced levels of NET, suggesting that it is down-regulated by a complete absence of catecholamines and not NE per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, tyrosine hydroxylase knockout (Th -/-) mice that lack both NE and @CHEMICAL$ (DA) have reduced levels of @GENE$, suggesting that it is down-regulated by a complete absence of catecholamines and not NE per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, @CHEMICAL$ knockout (Th -/-) mice that lack both NE and dopamine (@GENE$) have reduced levels of NET, suggesting that it is down-regulated by a complete absence of catecholamines and not NE per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, tyrosine hydroxylase knockout (@CHEMICAL$ -/-) mice that lack both NE and dopamine (@GENE$) have reduced levels of NET, suggesting that it is down-regulated by a complete absence of catecholamines and not NE per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, tyrosine hydroxylase knockout (Th -/-) mice that lack both NE and dopamine (@CHEMICAL$) have reduced levels of @GENE$, suggesting that it is down-regulated by a complete absence of catecholamines and not NE per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, @CHEMICAL$ knockout (Th -/-) mice that lack both NE and dopamine (DA) have reduced levels of NET, suggesting that it is down-regulated by a complete absence of @GENE$ and not NE per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, tyrosine hydroxylase knockout (@CHEMICAL$ -/-) mice that lack both NE and dopamine (DA) have reduced levels of NET, suggesting that it is down-regulated by a complete absence of @GENE$ and not NE per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, tyrosine hydroxylase knockout (Th -/-) mice that lack both NE and dopamine (DA) have reduced levels of @CHEMICAL$, suggesting that it is down-regulated by a complete absence of @GENE$ and not NE per se.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Chronic treatment with the @CHEMICAL$ inhibitor, @GENE$ (DMI), reduced NET levels in both control and Dbh -/- mice, demonstrating that NE is not required for the regulation of NET by antidepressant drugs.
CPR:4
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Chronic treatment with the NET inhibitor, @CHEMICAL$ (DMI), reduced @GENE$ levels in both control and Dbh -/- mice, demonstrating that NE is not required for the regulation of NET by antidepressant drugs.
CPR:4
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Chronic treatment with the NET inhibitor, @CHEMICAL$ (DMI), reduced NET levels in both control and @GENE$ -/- mice, demonstrating that NE is not required for the regulation of NET by antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Chronic treatment with the NET inhibitor, @CHEMICAL$ (DMI), reduced NET levels in both control and Dbh -/- mice, demonstrating that NE is not required for the regulation of @GENE$ by antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Chronic treatment with the @CHEMICAL$ inhibitor, desipramine (DMI), reduced NET levels in both control and Dbh -/- mice, demonstrating that @GENE$ is not required for the regulation of NET by antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Chronic treatment with the NET inhibitor, desipramine (DMI), reduced @CHEMICAL$ levels in both control and Dbh -/- mice, demonstrating that @GENE$ is not required for the regulation of NET by antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Chronic treatment with the NET inhibitor, desipramine (DMI), reduced NET levels in both control and @CHEMICAL$ -/- mice, demonstrating that @GENE$ is not required for the regulation of NET by antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Chronic treatment with the NET inhibitor, desipramine (DMI), reduced NET levels in both control and Dbh -/- mice, demonstrating that @CHEMICAL$ is not required for the regulation of @GENE$ by antidepressant drugs.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEM-GENE$ regulation of spinal norepinephrine release.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ regulation of spinal @GENE$ release.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: BACKGROUND: @CHEM-GENE$ (nAChR) agonists produce antinociception in animals.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: BACKGROUND: Neuronal nicotinic @CHEMICAL$ receptor (@GENE$) agonists produce antinociception in animals.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: This study tested whether @CHEMICAL$ agonists stimulate spinal release of the neurotransmitter @GENE$ either by direct actions on noradrenergic terminals or indirectly by stimulating release of other neurotransmitters to induce norepinephrine release.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: This study tested whether @CHEMICAL$ agonists stimulate spinal release of the neurotransmitter norepinephrine either by direct actions on noradrenergic terminals or indirectly by stimulating release of other neurotransmitters to induce @GENE$ release.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Probes were perfused with artificial cerebrospinal fluid containing nicotine, the specific alpha(4)beta(2*) nAChR agonist @CHEMICAL$, or nicotine plus @GENE$ antagonists and norepinephrine measured in the microdialysates.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Probes were perfused with artificial cerebrospinal fluid containing nicotine, the specific @CHEMICAL$ agonist @GENE$, or nicotine plus nAChR antagonists and norepinephrine measured in the microdialysates.
CPR:5