Datasets:
language:
- code
- en
multilinguality:
- multiprogramming languages
task_categories:
- text-generation
license: mit
dataset_info:
features:
- name: identifier
dtype: string
- name: repo
dtype: string
- name: path
dtype: string
- name: language
dtype: string
- name: code
dtype: string
- name: code_tokens
dtype: string
- name: original_docstring
dtype: string
- name: comment
dtype: string
- name: docstring_tokens
dtype: string
- name: docstring
dtype: string
- name: original_string
dtype: string
pretty_name: The Vault Function
viewer: true
Table of Contents
- Dataset Description
- Dataset Summary
- Supported Tasks
- Languages
- Dataset Structure
- Dataset Statistics
- Usage
- Additional Information
Dataset Description
- Repository: FSoft-AI4Code/TheVault
- Paper: The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation
- Contact: [email protected]
- Website: https://www.fpt-aicenter.com/ai-residency/
Dataset Summary
The Vault dataset is a comprehensive, large-scale, multilingual parallel dataset that features high-quality code-text pairs derived from The Stack, the largest permissively-licensed source code dataset.
We provide The Vault which contains code snippets from 10 popular programming languages such as Java, JavaScript, Python, Ruby, Rust, Golang, C#, C++, C, and PHP. This dataset provides multiple code-snippet levels, metadata, and 11 docstring styles for enhanced usability and versatility.
Supported Tasks
The Vault can be used for pretraining LLMs or downstream code-text interaction tasks. A number of tasks related to code understanding and geneartion can be constructed using The Vault such as code summarization, text-to-code generation and code search.
Languages
The natural language text (docstring) is in English.
10 programming languages are supported in The Vault: Python
, Java
, JavaScript
, PHP
, C
, C#
, C++
, Go
, Ruby
, Rust
Note: C and Go are not contained in this repo due to the nonexistence of traditional classes in these languages.
Dataset Structure
Data Instances
{
"hexsha": "78b961a6673ec1e12f8d95c33ef081f75561a87c",
"repo": "AIS-Bonn/sl-cutscenes",
"path": "sl_cutscenes/object_models.py",
"license": [
"MIT"
],
"language": "Python",
"identifier": "MeshLoader",
"original_docstring": "\n Class to load the meshes for the objects in a scene.\n ",
"docstring": "Class to load the meshes for the objects in a scene.",
"docstring_tokens": [
"Class",
"to",
"load",
"the",
"meshes",
"for",
"the",
"objects",
"in",
"a",
"scene",
"."
],
"code": "class MeshLoader:\n \"\"\"\n Class to load the meshes for the objects in a scene.\n \"\"\"\n\n def __init__(self):\n \"\"\"Module initializer\"\"\"\n self.base_dir = CONSTANTS.MESH_BASE_DIR\n self.text_dir = CONSTANTS.TEXT_BASE_DIR\n self.reset()\n\n def reset(self):\n self.loaded_meshes = []\n\n def get_meshes(self):\n \"\"\" \"\"\"\n extract_singular = lambda x: x[0] if len(x) == 1 else x\n return [extract_singular(item) for item in self.loaded_meshes]\n\n def load_meshes(self, obj_info: List[object_info.ObjectInfo], **kwargs):\n \"\"\"\n Loads the meshes whose information is given in parameter 'obj_info.\n Each call of this method APPENDS a list to the loaded_meshes attribute.\n :param obj_info: The object information of the meshes to be loaded.\n :param kwargs: additional mesh modifiers such as scale, specified with a leading 'mod_'\n \"\"\"\n paths = []\n for obj in obj_info:\n path = self.text_dir if obj.name.endswith(\"_floor\") or obj.name.endswith(\"_wall\") else self.base_dir\n paths.append((path / obj.mesh_fp).resolve())\n scales = [obj.scale for obj in obj_info]\n class_ids = [obj.class_id for obj in obj_info]\n mod_scales = kwargs.get(\"mod_scale\", [1.0] * len(scales))\n scales = [s * ms for (s, ms) in zip(scales, mod_scales)]\n flags = [mesh_flags(obj) for obj in obj_info]\n meshes = sl.Mesh.load_threaded(filenames=paths, flags=flags)\n\n # Setup class IDs\n for _, (mesh, scale, class_id) in enumerate(zip(meshes, scales, class_ids)):\n pt = torch.eye(4)\n pt[:3, :3] *= scale\n mesh.pretransform = pt\n mesh.class_index = class_id\n\n info_mesh_tuples = list(zip(obj_info, meshes))\n self.loaded_meshes.append(info_mesh_tuples)",
"code_tokens": [
"class",
"MeshLoader",
":",
"def",
"__init__",
"(",
"self",
")",
":",
"\"\"\"Module initializer\"\"\"",
"self",
".",
"base_dir",
"=",
"CONSTANTS",
".",
"MESH_BASE_DIR",
"self",
".",
"text_dir",
"=",
"CONSTANTS",
".",
"TEXT_BASE_DIR",
"self",
".",
"reset",
"(",
")",
"def",
"reset",
"(",
"self",
")",
":",
"self",
".",
"loaded_meshes",
"=",
"[",
"]",
"def",
"get_meshes",
"(",
"self",
")",
":",
"\"\"\" \"\"\"",
"extract_singular",
"=",
"lambda",
"x",
":",
"x",
"[",
"0",
"]",
"if",
"len",
"(",
"x",
")",
"==",
"1",
"else",
"x",
"return",
"[",
"extract_singular",
"(",
"item",
")",
"for",
"item",
"in",
"self",
".",
"loaded_meshes",
"]",
"def",
"load_meshes",
"(",
"self",
",",
"obj_info",
":",
"List",
"[",
"object_info",
".",
"ObjectInfo",
"]",
",",
"**",
"kwargs",
")",
":",
"\"\"\"\n Loads the meshes whose information is given in parameter 'obj_info.\n Each call of this method APPENDS a list to the loaded_meshes attribute.\n :param obj_info: The object information of the meshes to be loaded.\n :param kwargs: additional mesh modifiers such as scale, specified with a leading 'mod_'\n \"\"\"",
"paths",
"=",
"[",
"]",
"for",
"obj",
"in",
"obj_info",
":",
"path",
"=",
"self",
".",
"text_dir",
"if",
"obj",
".",
"name",
".",
"endswith",
"(",
"\"_floor\"",
")",
"or",
"obj",
".",
"name",
".",
"endswith",
"(",
"\"_wall\"",
")",
"else",
"self",
".",
"base_dir",
"paths",
".",
"append",
"(",
"(",
"path",
"/",
"obj",
".",
"mesh_fp",
")",
".",
"resolve",
"(",
")",
")",
"scales",
"=",
"[",
"obj",
".",
"scale",
"for",
"obj",
"in",
"obj_info",
"]",
"class_ids",
"=",
"[",
"obj",
".",
"class_id",
"for",
"obj",
"in",
"obj_info",
"]",
"mod_scales",
"=",
"kwargs",
".",
"get",
"(",
"\"mod_scale\"",
",",
"[",
"1.0",
"]",
"*",
"len",
"(",
"scales",
")",
")",
"scales",
"=",
"[",
"s",
"*",
"ms",
"for",
"(",
"s",
",",
"ms",
")",
"in",
"zip",
"(",
"scales",
",",
"mod_scales",
")",
"]",
"flags",
"=",
"[",
"mesh_flags",
"(",
"obj",
")",
"for",
"obj",
"in",
"obj_info",
"]",
"meshes",
"=",
"sl",
".",
"Mesh",
".",
"load_threaded",
"(",
"filenames",
"=",
"paths",
",",
"flags",
"=",
"flags",
")",
"for",
"_",
",",
"(",
"mesh",
",",
"scale",
",",
"class_id",
")",
"in",
"enumerate",
"(",
"zip",
"(",
"meshes",
",",
"scales",
",",
"class_ids",
")",
")",
":",
"pt",
"=",
"torch",
".",
"eye",
"(",
"4",
")",
"pt",
"[",
":",
"3",
",",
":",
"3",
"]",
"*=",
"scale",
"mesh",
".",
"pretransform",
"=",
"pt",
"mesh",
".",
"class_index",
"=",
"class_id",
"info_mesh_tuples",
"=",
"list",
"(",
"zip",
"(",
"obj_info",
",",
"meshes",
")",
")",
"self",
".",
"loaded_meshes",
".",
"append",
"(",
"info_mesh_tuples",
")"
],
"short_docstring": "Class to load the meshes for the objects in a scene.",
"short_docstring_tokens": [
"Class",
"to",
"load",
"the",
"meshes",
"for",
"the",
"objects",
"in",
"a",
"scene",
"."
],
"comment": [
"\"\"\"\n Class to load the meshes for the objects in a scene.\n \"\"\"",
"\"\"\"Module initializer\"\"\"",
"\"\"\" \"\"\"",
"\"\"\"\n Loads the meshes whose information is given in parameter 'obj_info.\n Each call of this method APPENDS a list to the loaded_meshes attribute.\n :param obj_info: The object information of the meshes to be loaded.\n :param kwargs: additional mesh modifiers such as scale, specified with a leading 'mod_'\n \"\"\"",
"# Setup class IDs"
],
"parameters": [],
"docstring_params": {
"returns": [],
"raises": [],
"params": [],
"outlier_params": [],
"others": []
}
}
Data Fields
Data fields for function level:
- hexsha (string): the unique git hash of file
- repo (string): the owner/repo
- path (string): the full path to the original file
- license (list): licenses in the repo
- language (string): the programming language
- identifier (string): the function or method name
- original_string (string): original version of function/class node
- original_docstring (string): the raw string before tokenization or parsing
- code (string): the part of the original that is code
- code_tokens (list): tokenized version of
code
- short_docstring (string): short, brief summarization (first line of the docstring)
- short_docstring_tokens (list): tokenized version of `short_docstring
- docstring (string): the top-level comment or docstring (docstring version without param’s doc, return, exception fields, etc)
- docstring_tokens (list): tokenized version of docstring
- comment (list): list of comments (line) inside the function/class
- parameters (list): List of parameters and its type (type can be None)
- docstring_params (dict): Dictionary of the parsed information from docstring
See here for more details and examples.
Data Splits
In this repo, the class level data is not split, and contained in only train set.
Dataset Statistics
Language | Number of samples |
---|---|
Python | 422,187 |
Java | 4,872,485 |
JavaScript | 291,479 |
PHP | 1,173,916 |
C# | 1,437,800 |
C++ | 174,370 |
Ruby | 353,859 |
Rust | 93,311 |
C | - |
Go | - |
TOTAL | 9,121,300 |
Usage
You can load The Vault dataset using datasets library: pip install datasets
from datasets import load_dataset
# Load full class level dataset
dataset = load_dataset("Fsoft-AIC/the-vault-class")
# specific language (e.g. Python)
dataset = load_dataset("Fsoft-AIC/the-vault-class", languages=['Python'])
# dataset streaming
data = load_dataset("Fsoft-AIC/the-vault-class", streaming= True)
for sample in iter(data['train']):
print(sample)
A back up dataset can be downloaded in azure storage. See Download The Vault from Azure blob storage.
Additional information
Licensing Information
MIT License
Citation Information
@article{manh2023vault,
title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation},
author={Manh, Dung Nguyen and Hai, Nam Le and Dau, Anh TV and Nguyen, Anh Minh and Nghiem, Khanh and Guo, Jin and Bui, Nghi DQ},
journal={arXiv preprint arXiv:2305.06156},
year={2023}
}
Contributions
This dataset is developed by FSOFT AI4Code team.