---
language:
- code
- en
multilinguality:
- multiprogramming languages
task_categories:
- text-generation
license: mit
dataset_info:
features:
- name: identifier
dtype: string
- name: repo
dtype: string
- name: path
dtype: string
- name: language
dtype: string
- name: code
dtype: string
- name: code_tokens
dtype: string
- name: original_docstring
dtype: string
- name: comment
dtype: string
- name: docstring_tokens
dtype: string
- name: docstring
dtype: string
- name: original_string
dtype: string
pretty_name: The Vault Function
viewer: true
---
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Statistics](#dataset-statistics)
- [Usage](#usage)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [FSoft-AI4Code/TheVault](https://github.com/FSoft-AI4Code/TheVault)
- **Paper:** [The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation](https://arxiv.org/abs/2305.06156)
- **Contact:** support.ailab@fpt.com
- **Website:** https://www.fpt-aicenter.com/ai-residency/
# The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation
## Dataset Summary
The Vault dataset is a comprehensive, large-scale, multilingual parallel dataset that features high-quality code-text pairs derived from The Stack, the largest permissively-licensed source code dataset.
We provide The Vault which contains code snippets from 10 popular programming languages such as Java, JavaScript, Python, Ruby, Rust, Golang, C#, C++, C, and PHP. This dataset provides multiple code-snippet levels, metadata, and 11 docstring styles for enhanced usability and versatility.
## Supported Tasks
The Vault can be used for pretraining LLMs or downstream code-text interaction tasks. A number of tasks related to code understanding and geneartion can be constructed using The Vault such as *code summarization*, *text-to-code generation* and *code search*.
## Languages
The natural language text (docstring) is in English.
10 programming languages are supported in The Vault: `Python`, `Java`, `JavaScript`, `PHP`, `C`, `C#`, `C++`, `Go`, `Ruby`, `Rust`
*Note: C and Go are not contained in this repo due to the nonexistence of traditional classes in these languages.*
## Dataset Structure
### Data Instances
```
{
"hexsha": "78b961a6673ec1e12f8d95c33ef081f75561a87c",
"repo": "AIS-Bonn/sl-cutscenes",
"path": "sl_cutscenes/object_models.py",
"license": [
"MIT"
],
"language": "Python",
"identifier": "MeshLoader",
"original_docstring": "\n Class to load the meshes for the objects in a scene.\n ",
"docstring": "Class to load the meshes for the objects in a scene.",
"docstring_tokens": [
"Class",
"to",
"load",
"the",
"meshes",
"for",
"the",
"objects",
"in",
"a",
"scene",
"."
],
"code": "class MeshLoader:\n \"\"\"\n Class to load the meshes for the objects in a scene.\n \"\"\"\n\n def __init__(self):\n \"\"\"Module initializer\"\"\"\n self.base_dir = CONSTANTS.MESH_BASE_DIR\n self.text_dir = CONSTANTS.TEXT_BASE_DIR\n self.reset()\n\n def reset(self):\n self.loaded_meshes = []\n\n def get_meshes(self):\n \"\"\" \"\"\"\n extract_singular = lambda x: x[0] if len(x) == 1 else x\n return [extract_singular(item) for item in self.loaded_meshes]\n\n def load_meshes(self, obj_info: List[object_info.ObjectInfo], **kwargs):\n \"\"\"\n Loads the meshes whose information is given in parameter 'obj_info.\n Each call of this method APPENDS a list to the loaded_meshes attribute.\n :param obj_info: The object information of the meshes to be loaded.\n :param kwargs: additional mesh modifiers such as scale, specified with a leading 'mod_'\n \"\"\"\n paths = []\n for obj in obj_info:\n path = self.text_dir if obj.name.endswith(\"_floor\") or obj.name.endswith(\"_wall\") else self.base_dir\n paths.append((path / obj.mesh_fp).resolve())\n scales = [obj.scale for obj in obj_info]\n class_ids = [obj.class_id for obj in obj_info]\n mod_scales = kwargs.get(\"mod_scale\", [1.0] * len(scales))\n scales = [s * ms for (s, ms) in zip(scales, mod_scales)]\n flags = [mesh_flags(obj) for obj in obj_info]\n meshes = sl.Mesh.load_threaded(filenames=paths, flags=flags)\n\n # Setup class IDs\n for _, (mesh, scale, class_id) in enumerate(zip(meshes, scales, class_ids)):\n pt = torch.eye(4)\n pt[:3, :3] *= scale\n mesh.pretransform = pt\n mesh.class_index = class_id\n\n info_mesh_tuples = list(zip(obj_info, meshes))\n self.loaded_meshes.append(info_mesh_tuples)",
"code_tokens": [
"class",
"MeshLoader",
":",
"def",
"__init__",
"(",
"self",
")",
":",
"\"\"\"Module initializer\"\"\"",
"self",
".",
"base_dir",
"=",
"CONSTANTS",
".",
"MESH_BASE_DIR",
"self",
".",
"text_dir",
"=",
"CONSTANTS",
".",
"TEXT_BASE_DIR",
"self",
".",
"reset",
"(",
")",
"def",
"reset",
"(",
"self",
")",
":",
"self",
".",
"loaded_meshes",
"=",
"[",
"]",
"def",
"get_meshes",
"(",
"self",
")",
":",
"\"\"\" \"\"\"",
"extract_singular",
"=",
"lambda",
"x",
":",
"x",
"[",
"0",
"]",
"if",
"len",
"(",
"x",
")",
"==",
"1",
"else",
"x",
"return",
"[",
"extract_singular",
"(",
"item",
")",
"for",
"item",
"in",
"self",
".",
"loaded_meshes",
"]",
"def",
"load_meshes",
"(",
"self",
",",
"obj_info",
":",
"List",
"[",
"object_info",
".",
"ObjectInfo",
"]",
",",
"**",
"kwargs",
")",
":",
"\"\"\"\n Loads the meshes whose information is given in parameter 'obj_info.\n Each call of this method APPENDS a list to the loaded_meshes attribute.\n :param obj_info: The object information of the meshes to be loaded.\n :param kwargs: additional mesh modifiers such as scale, specified with a leading 'mod_'\n \"\"\"",
"paths",
"=",
"[",
"]",
"for",
"obj",
"in",
"obj_info",
":",
"path",
"=",
"self",
".",
"text_dir",
"if",
"obj",
".",
"name",
".",
"endswith",
"(",
"\"_floor\"",
")",
"or",
"obj",
".",
"name",
".",
"endswith",
"(",
"\"_wall\"",
")",
"else",
"self",
".",
"base_dir",
"paths",
".",
"append",
"(",
"(",
"path",
"/",
"obj",
".",
"mesh_fp",
")",
".",
"resolve",
"(",
")",
")",
"scales",
"=",
"[",
"obj",
".",
"scale",
"for",
"obj",
"in",
"obj_info",
"]",
"class_ids",
"=",
"[",
"obj",
".",
"class_id",
"for",
"obj",
"in",
"obj_info",
"]",
"mod_scales",
"=",
"kwargs",
".",
"get",
"(",
"\"mod_scale\"",
",",
"[",
"1.0",
"]",
"*",
"len",
"(",
"scales",
")",
")",
"scales",
"=",
"[",
"s",
"*",
"ms",
"for",
"(",
"s",
",",
"ms",
")",
"in",
"zip",
"(",
"scales",
",",
"mod_scales",
")",
"]",
"flags",
"=",
"[",
"mesh_flags",
"(",
"obj",
")",
"for",
"obj",
"in",
"obj_info",
"]",
"meshes",
"=",
"sl",
".",
"Mesh",
".",
"load_threaded",
"(",
"filenames",
"=",
"paths",
",",
"flags",
"=",
"flags",
")",
"for",
"_",
",",
"(",
"mesh",
",",
"scale",
",",
"class_id",
")",
"in",
"enumerate",
"(",
"zip",
"(",
"meshes",
",",
"scales",
",",
"class_ids",
")",
")",
":",
"pt",
"=",
"torch",
".",
"eye",
"(",
"4",
")",
"pt",
"[",
":",
"3",
",",
":",
"3",
"]",
"*=",
"scale",
"mesh",
".",
"pretransform",
"=",
"pt",
"mesh",
".",
"class_index",
"=",
"class_id",
"info_mesh_tuples",
"=",
"list",
"(",
"zip",
"(",
"obj_info",
",",
"meshes",
")",
")",
"self",
".",
"loaded_meshes",
".",
"append",
"(",
"info_mesh_tuples",
")"
],
"short_docstring": "Class to load the meshes for the objects in a scene.",
"short_docstring_tokens": [
"Class",
"to",
"load",
"the",
"meshes",
"for",
"the",
"objects",
"in",
"a",
"scene",
"."
],
"comment": [
"\"\"\"\n Class to load the meshes for the objects in a scene.\n \"\"\"",
"\"\"\"Module initializer\"\"\"",
"\"\"\" \"\"\"",
"\"\"\"\n Loads the meshes whose information is given in parameter 'obj_info.\n Each call of this method APPENDS a list to the loaded_meshes attribute.\n :param obj_info: The object information of the meshes to be loaded.\n :param kwargs: additional mesh modifiers such as scale, specified with a leading 'mod_'\n \"\"\"",
"# Setup class IDs"
],
"parameters": [],
"docstring_params": {
"returns": [],
"raises": [],
"params": [],
"outlier_params": [],
"others": []
}
}
```
### Data Fields
Data fields for function level:
- **hexsha** (string): the unique git hash of file
- **repo** (string): the owner/repo
- **path** (string): the full path to the original file
- **license** (list): licenses in the repo
- **language** (string): the programming language
- **identifier** (string): the function or method name
- **original_string** (string): original version of function/class node
- **original_docstring** (string): the raw string before tokenization or parsing
- **code** (string): the part of the original that is code
- **code_tokens** (list): tokenized version of `code`
- **short_docstring** (string): short, brief summarization (first line of the docstring)
- **short_docstring_tokens** (list): tokenized version of `short_docstring
- **docstring** (string): the top-level comment or docstring (docstring version without param’s doc, return, exception fields, etc)
- **docstring_tokens** (list): tokenized version of docstring
- **comment** (list): list of comments (line) inside the function/class
- **parameters** (list): List of parameters and its type (type can be None)
- **docstring_params** (dict): Dictionary of the parsed information from docstring
See [here](https://github.com/FSoft-AI4Code/TheVault/blob/main/data/README.md) for more details and examples.
### Data Splits
In this repo, the class level data is not split, and contained in only train set.
## Dataset Statistics
|Language | Number of samples |
|:-----------|------------------------:|
|Python | 422,187 |
|Java | 4,872,485 |
|JavaScript | 291,479 |
|PHP | 1,173,916 |
|C# | 1,437,800 |
|C++ | 174,370 |
|Ruby | 353,859 |
|Rust | 93,311 |
|C | - |
|Go | - |
|TOTAL | **9,121,300** |
## Usage
You can load The Vault dataset using datasets library: ```pip install datasets```
```python
from datasets import load_dataset
# Load full class level dataset
dataset = load_dataset("Fsoft-AIC/the-vault-class")
# specific language (e.g. Python)
dataset = load_dataset("Fsoft-AIC/the-vault-class", languages=['Python'])
# dataset streaming
data = load_dataset("Fsoft-AIC/the-vault-class", streaming= True)
for sample in iter(data['train']):
print(sample)
```
A back up dataset can be downloaded in azure storage. See [Download The Vault from Azure blob storage](https://github.com/FSoft-AI4Code/TheVault#download-via-link).
## Additional information
### Licensing Information
MIT License
### Citation Information
```
@article{manh2023vault,
title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation},
author={Manh, Dung Nguyen and Hai, Nam Le and Dau, Anh TV and Nguyen, Anh Minh and Nghiem, Khanh and Guo, Jin and Bui, Nghi DQ},
journal={arXiv preprint arXiv:2305.06156},
year={2023}
}
```
### Contributions
This dataset is developed by [FSOFT AI4Code team](https://github.com/FSoft-AI4Code).