Edit model card

kuno-dogwalker-7b

🦮🦮🦮🥷

Decent metrics, but writing feels off compared to kuno-royale-v2-7b.

Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO 76.45 73.12 89.09 64.80 77.45 84.77 69.45
mlabonne/AlphaMonarch-7B 75.99 73.04 89.18 64.40 77.91 84.69 66.72
core-3/kuno-dogwalker-7b 74.94 72.01 88.17 64.96 71.39 82.00 71.11
core-3/kuno-royale-v2-7b 74.80 72.01 88.15 65.07 71.10 82.24 70.20
core-3/kuno-royale-7B 74.74 71.76 88.20 65.13 71.12 82.32 69.90
SanjiWatsuki/Kunoichi-DPO-v2-7B 72.46 69.62 87.44 64.94 66.06 80.82 65.88
SanjiWatsuki/Kunoichi-7B 72.13 68.69 87.10 64.90 64.04 81.06 67.02

kuno-dogwalker-7b is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: SanjiWatsuki/Kunoichi-DPO-v2-7B
        layer_range: [0, 32]
      - model: mlabonne/AlphaMonarch-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "core-3/kuno-dogwalker-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
78
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for core-3/kuno-dogwalker-7b

Evaluation results