kuno-royale-v2-7b
An attempt to further strengthen the roleplaying prose of SanjiWatsuki/Kunoichi-DPO-v2-7B using eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO, a high-scorer for 7B models on the Open LLM Leaderboard.
Personal RP tests prove promising, and meaningless leaderboard metrics have improved vs SanjiWatsuki/Kunoichi-DPO-v2-7B.
Some GGUF quants available here.
Works well with Silly Tavern Noromaid template recommended by SanjiWatsuki for Kunoichi-7B: Context, Instruct
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|---|
eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO | 76.45 | 73.12 | 89.09 | 64.80 | 77.45 | 84.77 | 69.45 |
core-3/kuno-royale-v2-7b | 74.80 | 72.01 | 88.15 | 65.07 | 71.10 | 82.24 | 70.20 |
core-3/kuno-royale-7B | 74.74 | 71.76 | 88.20 | 65.13 | 71.12 | 82.32 | 69.90 |
SanjiWatsuki/Kunoichi-DPO-v2-7B | 72.46 | 69.62 | 87.44 | 64.94 | 66.06 | 80.82 | 65.88 |
SanjiWatsuki/Kunoichi-7B | 72.13 | 68.69 | 87.10 | 64.90 | 64.04 | 81.06 | 67.02 |
Original LazyMergekit Card:
kuno-royale-v2-7b is a merge of the following models using LazyMergekit:
🧩 Configuration
slices:
- sources:
- model: SanjiWatsuki/Kunoichi-DPO-v2-7B
layer_range: [0, 32]
- model: eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO
layer_range: [0, 32]
merge_method: slerp
base_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "core-3/kuno-royale-v2-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 134
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for core-3/kuno-royale-v2-7b
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard72.010
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard88.150
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard65.070
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard71.100
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard82.240
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard70.200