|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- drug_bill_layoutv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-vinv2 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: drug_bill_layoutv3 |
|
type: drug_bill_layoutv3 |
|
config: Vin_Drug_Bill |
|
split: train |
|
args: Vin_Drug_Bill |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 1.0 |
|
- name: Recall |
|
type: recall |
|
value: 1.0 |
|
- name: F1 |
|
type: f1 |
|
value: 1.0 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 1.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-vinv2 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the drug_bill_layoutv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0001 |
|
- Precision: 1.0 |
|
- Recall: 1.0 |
|
- F1: 1.0 |
|
- Accuracy: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 3000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.33 | 250 | 0.0025 | 0.9994 | 0.9994 | 0.9994 | 0.9998 | |
|
| 0.0662 | 2.66 | 500 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0662 | 3.99 | 750 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0111 | 5.32 | 1000 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0111 | 6.65 | 1250 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0126 | 7.98 | 1500 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0126 | 9.31 | 1750 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0032 | 10.64 | 2000 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0032 | 11.97 | 2250 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0011 | 13.3 | 2500 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0011 | 14.63 | 2750 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0002 | 15.96 | 3000 | 0.0001 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.2 |
|
|