buihungtpd3's picture
update model card README.md
0832ef1
|
raw
history blame
3.04 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - drug_bill_layoutv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-vinv2
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: drug_bill_layoutv3
          type: drug_bill_layoutv3
          config: Vin_Drug_Bill
          split: train
          args: Vin_Drug_Bill
        metrics:
          - name: Precision
            type: precision
            value: 1
          - name: Recall
            type: recall
            value: 1
          - name: F1
            type: f1
            value: 1
          - name: Accuracy
            type: accuracy
            value: 1

layoutlmv3-finetuned-vinv2

This model is a fine-tuned version of microsoft/layoutlmv3-base on the drug_bill_layoutv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.33 250 0.0025 0.9994 0.9994 0.9994 0.9998
0.0662 2.66 500 0.0004 1.0 1.0 1.0 1.0
0.0662 3.99 750 0.0003 1.0 1.0 1.0 1.0
0.0111 5.32 1000 0.0002 1.0 1.0 1.0 1.0
0.0111 6.65 1250 0.0001 1.0 1.0 1.0 1.0
0.0126 7.98 1500 0.0001 1.0 1.0 1.0 1.0
0.0126 9.31 1750 0.0001 1.0 1.0 1.0 1.0
0.0032 10.64 2000 0.0001 1.0 1.0 1.0 1.0
0.0032 11.97 2250 0.0001 1.0 1.0 1.0 1.0
0.0011 13.3 2500 0.0001 1.0 1.0 1.0 1.0
0.0011 14.63 2750 0.0001 1.0 1.0 1.0 1.0
0.0002 15.96 3000 0.0001 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.2