metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: xtremedistil-l6-h384-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.928
xtremedistil-l6-h384-emotion
This model is a fine-tuned version of microsoft/xtremedistil-l6-h384-uncased on the emotion dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.928
This model can be quantized to int8 and retain accuracy
- Accuracy 0.912
import transformers import transformers.convert_graph_to_onnx as onnx_convert from pathlib import Path pipeline = transformers.pipeline("text-classification",model=model,tokenizer=tokenizer) onnx_convert.convert_pytorch(pipeline, opset=11, output=Path("xtremedistil-l6-h384-emotion.onnx"), use_external_format=False) from onnxruntime.quantization import quantize_dynamic, QuantType quantize_dynamic("xtremedistil-l6-h384-emotion.onnx", "xtremedistil-l6-h384-emotion-int8.onnx", weight_type=QuantType.QUInt8)
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- num_epochs: 14
Training results
Epoch Training Loss Validation Loss Accuracy 1 No log 0.960511 0.689000 2 No log 0.620671 0.824000 3 No log 0.435741 0.880000 4 0.797900 0.341771 0.896000 5 0.797900 0.294780 0.916000 6 0.797900 0.250572 0.918000 7 0.797900 0.232976 0.924000 8 0.277300 0.216347 0.924000 9 0.277300 0.202306 0.930500 10 0.277300 0.192530 0.930000 11 0.277300 0.192500 0.926500 12 0.181700 0.187347 0.928500 13 0.181700 0.185896 0.929500 14 0.181700 0.185154 0.928000