Add model card
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- emotion
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: xtremedistil-l6-h384-emotion
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: emotion
|
17 |
+
type: emotion
|
18 |
+
args: default
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value: 0.928
|
23 |
+
---
|
24 |
+
# xtremedistil-l6-h384-emotion
|
25 |
+
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the emotion dataset.
|
26 |
+
It achieves the following results on the evaluation set:
|
27 |
+
- Accuracy: 0.928
|
28 |
+
|
29 |
+
This model can be quantized to int8 and retain accuracy
|
30 |
+
- Accuracy 0.912
|
31 |
+
|
32 |
+
<pre>
|
33 |
+
import transformers
|
34 |
+
import transformers.convert_graph_to_onnx as onnx_convert
|
35 |
+
from pathlib import Path
|
36 |
+
|
37 |
+
pipeline = transformers.pipeline("text-classification",model=model,tokenizer=tokenizer)
|
38 |
+
onnx_convert.convert_pytorch(pipeline, opset=11, output=Path("xtremedistil-l6-h384-emotion.onnx"), use_external_format=False)
|
39 |
+
from onnxruntime.quantization import quantize_dynamic, QuantType
|
40 |
+
quantize_dynamic("xtremedistil-l6-h384-emotion.onnx", "xtremedistil-l6-h384-emotion-int8.onnx",
|
41 |
+
weight_type=QuantType.QUInt8)
|
42 |
+
</pre>
|
43 |
+
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 128
|
49 |
+
- eval_batch_size: 8
|
50 |
+
- seed: 42
|
51 |
+
- num_epochs: 14
|
52 |
+
### Training results
|
53 |
+
<pre>
|
54 |
+
Epoch Training Loss Validation Loss Accuracy
|
55 |
+
1 No log 0.960511 0.689000
|
56 |
+
2 No log 0.620671 0.824000
|
57 |
+
3 No log 0.435741 0.880000
|
58 |
+
4 0.797900 0.341771 0.896000
|
59 |
+
5 0.797900 0.294780 0.916000
|
60 |
+
6 0.797900 0.250572 0.918000
|
61 |
+
7 0.797900 0.232976 0.924000
|
62 |
+
8 0.277300 0.216347 0.924000
|
63 |
+
9 0.277300 0.202306 0.930500
|
64 |
+
10 0.277300 0.192530 0.930000
|
65 |
+
11 0.277300 0.192500 0.926500
|
66 |
+
12 0.181700 0.187347 0.928500
|
67 |
+
13 0.181700 0.185896 0.929500
|
68 |
+
14 0.181700 0.185154 0.928000
|
69 |
+
</pre>
|