|
--- |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
|
|
Pre-trained models and output samples of ControlNet-LLLite form bdsqlsz |
|
|
|
Inference with ComfyUI: https://github.com/kohya-ss/ControlNet-LLLite-ComfyUI |
|
|
|
For 1111's Web UI, [sd-webui-controlnet](https://github.com/Mikubill/sd-webui-controlnet) extension supports ControlNet-LLLite. |
|
|
|
Training: https://github.com/kohya-ss/sd-scripts/blob/sdxl/docs/train_lllite_README.md |
|
|
|
The recommended preprocessing for the animeface model is [Anime-Face-Segmentation](https://github.com/siyeong0/Anime-Face-Segmentation) |
|
|
|
# Models |
|
|
|
## Trained on anime model |
|
|
|
AnimeFaceSegment、Normal、T2i-Color/Shuffle、lineart_anime_denoise、recolor_luminance |
|
|
|
Base Model use[Kohaku-XL](https://civitai.com/models/136389?modelVersionId=150441) |
|
|
|
MLSD |
|
|
|
Base Model use[ProtoVision XL - High Fidelity 3D](https://civitai.com/models/125703?modelVersionId=144229) |
|
|
|
# Samples |
|
|
|
## AnimeFaceSegmentV1 |
|
|
|
![source 1](./sample/00000-1254802172.png) ![sample 1-1](./sample/00153-1415397694.png) |
|
|
|
![sample 1-2](./sample/00155-541628598.png) ![sample 1-3](./sample/00156-3563138011.png) |
|
|
|
![source 2](./sample/00013-1254802185.png) ![sample 2-1](./sample/00157-172216875.png) |
|
|
|
![sample 2-2](./sample/00161-125697048.png) ![sample 2-3](./sample/00163-3802019239.png) |
|
|
|
## AnimeFaceSegmentV2 |
|
|
|
![source 1](./sample/00015-882327104.png) |
|
|
|
![sample 1](./sample/grid-0000-656896882.png) |
|
|
|
![source 2](./sample/00081-882327170.png) |
|
|
|
![sample 2](./sample/grid-0000-2857388239.png) |
|
|
|
## MLSDV2 |
|
|
|
![source 1](./sample/0-73.png) |
|
|
|
![preprocess 1](./sample/mlsd-0000.png) |
|
|
|
![sample 1](./sample/grid-0001-496872924.png) |
|
|
|
![source 2](./sample/0-151.png) |
|
|
|
![preprocess 2](./sample/mlsd-0001.png) |
|
|
|
![sample 2](./sample/grid-0002-906633402.png) |
|
|
|
## Normal |
|
|
|
![source 1](./sample/test.png) |
|
|
|
![preprocess 1](./sample/normal_bae-0004.png) |
|
|
|
![sample 1](./sample/grid-0007-2668683255.png) |
|
|
|
![source 2](./sample/zelda_rgba.png) |
|
|
|
![preprocess 2](./sample/normal_bae-0005.png) |
|
|
|
![sample 2](./sample/grid-0008-2191923130.png) |
|
|
|
## T2i-Color/Shuffle |
|
|
|
![source 1](./sample/sample_0_525_c9a3a20fa609fe4bbf04.png) |
|
|
|
![preprocess 1](./sample/color-0008.png) |
|
|
|
![sample 1](./sample/grid-0017-751452001.jpg) |
|
|
|
![source 2](./sample/F8LQ75WXoAETQg3.jpg) |
|
|
|
![preprocess 2](./sample/color-0009.png) |
|
|
|
![sample 2](./sample/grid-0018-2976518185.jpg) |
|
|
|
## Lineart_Anime_Denoise |
|
|
|
![source 1](./sample/20230826131545.png) |
|
|
|
![preprocess 1](./sample/lineart_anime_denoise-1308.png) |
|
|
|
![sample 1](./sample/grid-0028-1461058306.png) |
|
|
|
![source 2](./sample/Snipaste_2023-08-10_23-33-53.png) |
|
|
|
![preprocess 2](./sample/lineart_anime_denoise-1309.png) |
|
|
|
![sample 2](./sample/grid-0030-1612754720.png) |
|
|
|
## Recolor_Luminance |
|
|
|
![source 1](./sample/F8LQ75WXoAETQg3.jpg) |
|
|
|
![preprocess 1](./sample/recolor_luminance-0014.png) |
|
|
|
![sample 1](./sample/grid-0060-2359545755.png) |
|
|
|
![source 2](./sample/Snipaste_2023-08-15_02-38-05.png) |
|
|
|
![preprocess 2](./sample/recolor_luminance-0016.png) |
|
|
|
![sample 2](./sample/grid-0061-448628292.png) |
|
|
|
## Canny |
|
|
|
![source 1](./sample/Snipaste_2023-08-10_23-33-53.png) |
|
|
|
![preprocess 1](./sample/canny-0034.png) |
|
|
|
![sample 1](./sample/grid-0100-2599077425.png) |
|
|
|
![source 2](./sample/00021-210474367.jpeg) |
|
|
|
![preprocess 2](./sample/canny-0021.png) |
|
|
|
![sample 2](./sample/grid-0084-938772089.png) |
|
|
|
## DW_OpenPose |
|
|
|
![preprocess 1](./sample/dw_openpose_full-0015.png) |
|
|
|
![sample 1](./sample/grid-0015-4163265662.png) |
|
|
|
![preprocess 2](./sample/dw_openpose_full-0030.png) |
|
|
|
![sample 2](./sample/grid-0030-2839828192.png) |
|
|
|
## Tile_Anime |
|
|
|
![source 1](./sample/03476-424776255.png) |
|
|
|
![sample 1](./sample/grid-0008-3461355229.png) |
|
|
|
![sample 2](./sample/grid-0016-1162724588.png) |
|
|
|
![sample 3](./sample/00094-188618111.png) |
|
|
|
和其他模型不同,我需要简单解释一下tile模型的用法。 |
|
总的来说,tile模型有三个用法, |
|
1、不输入任何提示词,它可以直接还原参考图的大致效果,然后略微重新修改局部细节,可以用于V2V。(图2) |
|
2、权重设定为0.55~0.75,它可以保持原本构图和姿势的基础上,接受提示词和LoRA的修改。(图3) |
|
3、使用配合放大效果,对每个tiling进行细节增加的同时保持一致性。(图4) |
|
|
|
因为训练时使用的数据集为动漫模型,所以目前对真实摄影风格的重绘效果并不好,需要等待完成最终版本。 |
|
|
|
Unlike other models, I need to briefly explain the usage of the tile model. |
|
In general, there are three uses for the tile model, |
|
1. Without entering any prompt words, it can directly restore the approximate effect of the reference image and then slightly modify local details. It can be used for V2V (Figure 2). |
|
2. With a weight setting of 0.55~0.75, it can maintain the original composition and pose while accepting modifications from prompt words and LoRA (Figure 3). |
|
3. Use in conjunction with magnification effects to increase detail for each tiling while maintaining consistency (Figure 4). |
|
|
|
Since the dataset used during training is an anime model, currently, its repainting effect on real photography styles is not good; we will have to wait until completing its final version. |