|
|
|
--- |
|
language: |
|
- en |
|
- de |
|
thumbnail: |
|
tags: |
|
- translation |
|
- wmt16 |
|
- allenai |
|
license: apache-2.0 |
|
datasets: |
|
- wmt16 |
|
metrics: |
|
- bleu |
|
--- |
|
|
|
# FSMT |
|
|
|
## Model description |
|
|
|
This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for en-de. |
|
|
|
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). |
|
|
|
All 3 models are available: |
|
|
|
* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) |
|
* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) |
|
* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
#### How to use |
|
|
|
```python |
|
from transformers import FSMTForConditionalGeneration, FSMTTokenizer |
|
mname = "allenai/wmt16-en-de-dist-6-1" |
|
tokenizer = FSMTTokenizer.from_pretrained(mname) |
|
model = FSMTForConditionalGeneration.from_pretrained(mname) |
|
|
|
input = "Machine learning is great, isn't it?" |
|
input_ids = tokenizer.encode(input, return_tensors="pt") |
|
outputs = model.generate(input_ids) |
|
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(decoded) # Maschinelles Lernen ist großartig, nicht wahr? |
|
|
|
``` |
|
|
|
#### Limitations and bias |
|
|
|
|
|
## Training data |
|
|
|
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). |
|
|
|
## Eval results |
|
|
|
Here are the BLEU scores: |
|
|
|
model | fairseq | transformers |
|
-------|---------|---------- |
|
wmt16-en-de-dist-6-1 | 27.4 | 27.11 |
|
|
|
The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. |
|
|
|
The score was calculated using this code: |
|
|
|
```bash |
|
git clone https://github.com/huggingface/transformers |
|
cd transformers |
|
export PAIR=en-de |
|
export DATA_DIR=data/$PAIR |
|
export SAVE_DIR=data/$PAIR |
|
export BS=8 |
|
export NUM_BEAMS=5 |
|
mkdir -p $DATA_DIR |
|
sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source |
|
sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target |
|
echo $PAIR |
|
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/wmt16-en-de-dist-6-1 $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS |
|
``` |
|
|
|
## Data Sources |
|
|
|
- [training, etc.](http://www.statmt.org/wmt16/) |
|
- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) |
|
|
|
|
|
### BibTeX entry and citation info |
|
|
|
``` |
|
@misc{kasai2020deep, |
|
title={Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}, |
|
author={Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}, |
|
year={2020}, |
|
eprint={2006.10369}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
|