Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/allenai/wmt16-en-de-dist-6-1/README.md
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- de
|
6 |
+
thumbnail:
|
7 |
+
tags:
|
8 |
+
- translation
|
9 |
+
- wmt16
|
10 |
+
- allenai
|
11 |
+
license: apache-2.0
|
12 |
+
datasets:
|
13 |
+
- wmt16
|
14 |
+
metrics:
|
15 |
+
- bleu
|
16 |
+
---
|
17 |
+
|
18 |
+
# FSMT
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for en-de.
|
23 |
+
|
24 |
+
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
|
25 |
+
|
26 |
+
All 3 models are available:
|
27 |
+
|
28 |
+
* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)
|
29 |
+
* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)
|
30 |
+
* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)
|
31 |
+
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
#### How to use
|
36 |
+
|
37 |
+
```python
|
38 |
+
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
|
39 |
+
mname = "allenai/wmt16-en-de-dist-6-1"
|
40 |
+
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
41 |
+
model = FSMTForConditionalGeneration.from_pretrained(mname)
|
42 |
+
|
43 |
+
input = "Machine learning is great, isn't it?"
|
44 |
+
input_ids = tokenizer.encode(input, return_tensors="pt")
|
45 |
+
outputs = model.generate(input_ids)
|
46 |
+
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
47 |
+
print(decoded) # Maschinelles Lernen ist großartig, nicht wahr?
|
48 |
+
|
49 |
+
```
|
50 |
+
|
51 |
+
#### Limitations and bias
|
52 |
+
|
53 |
+
|
54 |
+
## Training data
|
55 |
+
|
56 |
+
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
|
57 |
+
|
58 |
+
## Eval results
|
59 |
+
|
60 |
+
Here are the BLEU scores:
|
61 |
+
|
62 |
+
model | fairseq | transformers
|
63 |
+
-------|---------|----------
|
64 |
+
wmt16-en-de-dist-6-1 | 27.4 | 27.11
|
65 |
+
|
66 |
+
The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.
|
67 |
+
|
68 |
+
The score was calculated using this code:
|
69 |
+
|
70 |
+
```bash
|
71 |
+
git clone https://github.com/huggingface/transformers
|
72 |
+
cd transformers
|
73 |
+
export PAIR=en-de
|
74 |
+
export DATA_DIR=data/$PAIR
|
75 |
+
export SAVE_DIR=data/$PAIR
|
76 |
+
export BS=8
|
77 |
+
export NUM_BEAMS=5
|
78 |
+
mkdir -p $DATA_DIR
|
79 |
+
sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source
|
80 |
+
sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target
|
81 |
+
echo $PAIR
|
82 |
+
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/wmt16-en-de-dist-6-1 $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
|
83 |
+
```
|
84 |
+
|
85 |
+
## Data Sources
|
86 |
+
|
87 |
+
- [training, etc.](http://www.statmt.org/wmt16/)
|
88 |
+
- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)
|
89 |
+
|
90 |
+
|
91 |
+
### BibTeX entry and citation info
|
92 |
+
|
93 |
+
```
|
94 |
+
@misc{kasai2020deep,
|
95 |
+
title={Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation},
|
96 |
+
author={Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith},
|
97 |
+
year={2020},
|
98 |
+
eprint={2006.10369},
|
99 |
+
archivePrefix={arXiv},
|
100 |
+
primaryClass={cs.CL}
|
101 |
+
}
|
102 |
+
```
|
103 |
+
|