WpythonW's picture
Add new SentenceTransformer model.
f70a8e2 verified
metadata
base_model: cointegrated/rubert-tiny2
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1630
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: Сотруднику не войти в ЛК
    sentences:
      - >-
        При проблемах со входом в личный кабинет, прежде чем создавать заявку в
        поддержку, убедитесь, что заходите в ЛК на сайте https://company-x5.ru,
        указываете актуальные и верные логин и пароль. Если Вам неизвестен
        логин, обратитесь к руководителю (ДМ), он сможет посмотреть Ваш логин и
        сбросить пароль в веб-табеле. Для самостоятельного сброса пароля
        позвоните с вашего мобильного телефона на +7 (XXX) XXX XX XX, наберите
        добавочный номер 10100, нажмите * и подтвердите сброс пароля, нажав #.
        Обновленный пароль отправляется по SMS.
      - >-
        Рекомендуем уточнить наличие вакансий в регионе, куда планируется
        переезд. Обратиться к руководителю для формирования заявки в рамках
        процесса «Перевод» с заполнением атрибутов заявки.
      - >-
        Оформление отпуска без сохранения заработной платы возможно 2 способами:
        1. в разделе "Отпуска" в левом меню Личного кабинета сотрудника
        (https://company-x5.ru/vacations/plan?vp_page=1 ); 2. в разделе
        "Заявки", группа "Отпуск", плитка "Отпуск без сохранения ЗП".
        (https://company-x5.ru/requests/tiles/my/)
  - source_sentence: Как внести данные об автомобиле?
    sentences:
      - >-
        У Вас согласована Заявка на удаленную работу. График на удаленную работу
        ранее Вами не создавался. Вам необходимо зайти в личный кабинет, открыть
        вкладку "Удаленная работа" и создать себе график (от 1 до 6 месяцев).
        После создания, график перейдет к руководителю на согласование. А после
        согласования к Вам на подписание. После того, как процесс завершится,
        информирование прекратится.
      - >-
        Для внесения данных по личному автомобилю обратитесь, пожалуйста, к
        своему руководителю для создания заявки по теме "Изменение режима
        характера работы", подтема "Установка РХР и топливной карты". В
        комментариях опишите ситуацию и приложите ПТС, СТС, страховой полис и
        водительское удостоверение.
      - >-
        Выплата производится в случае утраты или повреждения жизненно
        необходимого недвижимого имущества работника, вследствие стихийных
        бедствий, пожара, кражи и т.д.;
  - source_sentence: не получается оформить внутреннего совместителя
    sentences:
      - Создайте, пожалуйста, обращение в ИТ поддержку на портале support
      - >-
        Вам необходимо обратиться в специалистам HR для того, чтобы они удалили
        мероприятие "работа на дому" и доп.соглашение, тогда статус текущей
        заявки станет «Не актуально» и появится возможность создать новую.
      - >-
        Оформление заявки на прием внутреннего совместителя производится
        руководителем магазина/отдела/РЦ, в который трудоустраивается сотрудник.
        При положительном решении он создает заявку по теме "Прием
        совместителей". Инструкция и шаблоны доступны по ссылке
        https://company-x5.ru/cms/zayavkaskillaz
  - source_sentence: Пропал календарь
    sentences:
      - >-
        При проблемах со входом в личный кабинет, прежде чем создавать заявку в
        поддержку, убедитесь, что заходите в ЛК на сайте https://company-x5.ru,
        указываете актуальные и верные логин и пароль. Если Вам неизвестен
        логин, обратитесь к руководителю (ДМ), он сможет посмотреть Ваш логин и
        сбросить пароль в веб-табеле. Для самостоятельного сброса пароля
        позвоните с вашего мобильного телефона на +7 (XXX) XXX XX XX, наберите
        добавочный номер 10100, нажмите * и подтвердите сброс пароля, нажав #.
        Обновленный пароль отправляется по SMS.
      - >-
        Доступ к программе "карьера" появляется спустя 4 месяца после
        трудоутстройства в компанию. Если по прошествии 4х месяцев раздел
        по-прежнему недоступен, обратитесь в поддержку
      - >-
        Вкладка "график работы" недоступна сотрудникам с организационным
        присвоением "Офис" и на данный момент доступна только сотрудникам
        розницы.
  - source_sentence: когда я получу деньги за отпуск
    sentences:
      - Создайте, пожалуйста, обращение в ИТ поддержку на портале support
      - >-
        Для изменения процента занятости сотруднику создайте, пожалуйста, заявку
        на сотрудника по теме "Изменение режима, характера работы"
      - >-
        Отпускные начисляются не позднее чем за три рабочих дня до даты начала
        отпуска.
model-index:
  - name: SentenceTransformer based on cointegrated/rubert-tiny2
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: test
          type: test
        metrics:
          - type: cosine_accuracy@1
            value: 0.7760736196319018
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9337423312883436
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9674846625766871
            name: Cosine Accuracy@5
          - type: cosine_precision@1
            value: 0.7760736196319018
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3112474437627812
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19349693251533742
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09852760736196317
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7760736196319018
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9337423312883436
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9674846625766871
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9852760736196319
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8898589364073973
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.85816851689551
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8590198622778252
            name: Cosine Map@100
          - type: dot_accuracy@1
            value: 0.7760736196319018
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.9337423312883436
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.9674846625766871
            name: Dot Accuracy@5
          - type: dot_precision@1
            value: 0.7760736196319018
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3112474437627812
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.19349693251533742
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09852760736196317
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.7760736196319018
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.9337423312883436
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.9674846625766871
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9852760736196319
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.8898589364073973
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.85816851689551
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.8590198622778252
            name: Dot Map@100
          - type: cosine_accuracy@1
            value: 0.9895705521472392
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 1
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 1
            name: Cosine Accuracy@5
          - type: cosine_precision@1
            value: 0.9895705521472392
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.33333333333333326
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.2
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.1
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.9895705521472392
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 1
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 1
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.996150801110868
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9947852760736197
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9947852760736197
            name: Cosine Map@100
          - type: dot_accuracy@1
            value: 0.9895705521472392
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 1
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 1
            name: Dot Accuracy@5
          - type: dot_precision@1
            value: 0.9895705521472392
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.33333333333333326
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.2
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.1
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.9895705521472392
            name: Dot Recall@1
          - type: dot_recall@3
            value: 1
            name: Dot Recall@3
          - type: dot_recall@5
            value: 1
            name: Dot Recall@5
          - type: dot_recall@10
            value: 1
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.996150801110868
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.9947852760736197
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.9947852760736197
            name: Dot Map@100

SentenceTransformer based on cointegrated/rubert-tiny2

This is a sentence-transformers model finetuned from cointegrated/rubert-tiny2. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: cointegrated/rubert-tiny2
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 312 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("WpythonW/RUbert-tiny_custom_test_2")
# Run inference
sentences = [
    'когда я получу деньги за отпуск',
    'Отпускные начисляются не позднее чем за три рабочих дня до даты начала отпуска.',
    'Создайте, пожалуйста, обращение в ИТ поддержку на портале support',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7761
cosine_accuracy@3 0.9337
cosine_accuracy@5 0.9675
cosine_precision@1 0.7761
cosine_precision@3 0.3112
cosine_precision@5 0.1935
cosine_precision@10 0.0985
cosine_recall@1 0.7761
cosine_recall@3 0.9337
cosine_recall@5 0.9675
cosine_recall@10 0.9853
cosine_ndcg@10 0.8899
cosine_mrr@10 0.8582
cosine_map@100 0.859
dot_accuracy@1 0.7761
dot_accuracy@3 0.9337
dot_accuracy@5 0.9675
dot_precision@1 0.7761
dot_precision@3 0.3112
dot_precision@5 0.1935
dot_precision@10 0.0985
dot_recall@1 0.7761
dot_recall@3 0.9337
dot_recall@5 0.9675
dot_recall@10 0.9853
dot_ndcg@10 0.8899
dot_mrr@10 0.8582
dot_map@100 0.859

Information Retrieval

Metric Value
cosine_accuracy@1 0.9896
cosine_accuracy@3 1.0
cosine_accuracy@5 1.0
cosine_precision@1 0.9896
cosine_precision@3 0.3333
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.9896
cosine_recall@3 1.0
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.9962
cosine_mrr@10 0.9948
cosine_map@100 0.9948
dot_accuracy@1 0.9896
dot_accuracy@3 1.0
dot_accuracy@5 1.0
dot_precision@1 0.9896
dot_precision@3 0.3333
dot_precision@5 0.2
dot_precision@10 0.1
dot_recall@1 0.9896
dot_recall@3 1.0
dot_recall@5 1.0
dot_recall@10 1.0
dot_ndcg@10 0.9962
dot_mrr@10 0.9948
dot_map@100 0.9948

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,630 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 3 tokens
    • mean: 12.4 tokens
    • max: 74 tokens
    • min: 7 tokens
    • mean: 61.91 tokens
    • max: 371 tokens
  • Samples:
    sentence_0 sentence_1
    Не отображается вкладка премия в ЛК. В консультации написали, что личный кабинет не передан на обслуживание в сервисную функцию HR Поддержку X5 Создайте, пожалуйста, обращение в ИТ поддержку на портале support
    как пересмотреть зарплату? По данному вопросу Вы можете обратиться в кадровую службу, создав заявку "Консультация по HR вопросам"
    поменять телефон сотруднику Кнопка "изменить номер" телефона находится в личном разделе в ЛК. Если доступа к ЛК нет, для смены номера телефона, обратитесь в поддержку
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • num_train_epochs: 1200
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1200
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Click to expand
Epoch Step Training Loss test_cosine_map@100
1.0 4 - 0.1922
2.0 8 - 0.1922
3.0 12 - 0.1925
4.0 16 - 0.1927
5.0 20 - 0.1929
6.0 24 - 0.1931
7.0 28 - 0.1934
8.0 32 - 0.1942
9.0 36 - 0.1951
10.0 40 - 0.1960
11.0 44 - 0.1977
12.0 48 - 0.1993
13.0 52 - 0.2011
14.0 56 - 0.2024
15.0 60 - 0.2042
16.0 64 - 0.2047
17.0 68 - 0.2064
18.0 72 - 0.2081
19.0 76 - 0.2106
20.0 80 - 0.2123
21.0 84 - 0.2132
22.0 88 - 0.2148
23.0 92 - 0.2173
24.0 96 - 0.2200
25.0 100 - 0.2216
26.0 104 - 0.2241
27.0 108 - 0.2262
28.0 112 - 0.2286
29.0 116 - 0.2317
30.0 120 - 0.2339
31.0 124 - 0.2353
32.0 128 - 0.2392
33.0 132 - 0.2421
34.0 136 - 0.2442
35.0 140 - 0.2469
36.0 144 - 0.2501
37.0 148 - 0.2543
38.0 152 - 0.2565
39.0 156 - 0.2603
40.0 160 - 0.2643
41.0 164 - 0.2668
42.0 168 - 0.2688
43.0 172 - 0.2711
44.0 176 - 0.2743
45.0 180 - 0.2767
46.0 184 - 0.2810
47.0 188 - 0.2838
48.0 192 - 0.2869
49.0 196 - 0.2896
50.0 200 - 0.2940
51.0 204 - 0.2972
52.0 208 - 0.3012
53.0 212 - 0.3053
54.0 216 - 0.3072
55.0 220 - 0.3097
56.0 224 - 0.3133
57.0 228 - 0.3171
58.0 232 - 0.3220
59.0 236 - 0.3249
60.0 240 - 0.3274
61.0 244 - 0.3304
62.0 248 - 0.3336
63.0 252 - 0.3357
64.0 256 - 0.3398
65.0 260 - 0.3438
66.0 264 - 0.3463
67.0 268 - 0.3498
68.0 272 - 0.3535
69.0 276 - 0.3580
70.0 280 - 0.3606
71.0 284 - 0.3634
72.0 288 - 0.3654
73.0 292 - 0.3679
74.0 296 - 0.3723
75.0 300 - 0.3750
76.0 304 - 0.3781
77.0 308 - 0.3810
78.0 312 - 0.3840
79.0 316 - 0.3871
80.0 320 - 0.3914
81.0 324 - 0.3958
82.0 328 - 0.3991
83.0 332 - 0.4025
84.0 336 - 0.4053
85.0 340 - 0.4091
86.0 344 - 0.4125
87.0 348 - 0.4148
88.0 352 - 0.4176
89.0 356 - 0.4212
90.0 360 - 0.4240
91.0 364 - 0.4277
92.0 368 - 0.4315
93.0 372 - 0.4338
94.0 376 - 0.4363
95.0 380 - 0.4392
96.0 384 - 0.4423
97.0 388 - 0.4460
98.0 392 - 0.4487
99.0 396 - 0.4526
100.0 400 - 0.4563
101.0 404 - 0.4597
102.0 408 - 0.4644
103.0 412 - 0.4678
104.0 416 - 0.4707
105.0 420 - 0.4750
106.0 424 - 0.4791
107.0 428 - 0.4820
108.0 432 - 0.4847
109.0 436 - 0.4895
110.0 440 - 0.4916
111.0 444 - 0.4961
112.0 448 - 0.4990
113.0 452 - 0.5032
114.0 456 - 0.5065
115.0 460 - 0.5093
116.0 464 - 0.5135
117.0 468 - 0.5175
118.0 472 - 0.5199
119.0 476 - 0.5243
120.0 480 - 0.5266
121.0 484 - 0.5297
122.0 488 - 0.5324
123.0 492 - 0.5353
124.0 496 - 0.5378
125.0 500 4.6316 0.5404
126.0 504 - 0.5449
127.0 508 - 0.5473
128.0 512 - 0.5500
129.0 516 - 0.5535
130.0 520 - 0.5553
131.0 524 - 0.5570
132.0 528 - 0.5597
133.0 532 - 0.5625
134.0 536 - 0.5660
135.0 540 - 0.5693
136.0 544 - 0.5713
137.0 548 - 0.5745
138.0 552 - 0.5767
139.0 556 - 0.5798
140.0 560 - 0.5835
141.0 564 - 0.5853
142.0 568 - 0.5863
143.0 572 - 0.5909
144.0 576 - 0.5933
145.0 580 - 0.5970
146.0 584 - 0.5995
147.0 588 - 0.6008
148.0 592 - 0.6040
149.0 596 - 0.6073
150.0 600 - 0.6097
151.0 604 - 0.6121
152.0 608 - 0.6163
153.0 612 - 0.6178
154.0 616 - 0.6205
155.0 620 - 0.6223
156.0 624 - 0.6242
157.0 628 - 0.6265
158.0 632 - 0.6290
159.0 636 - 0.6326
160.0 640 - 0.6347
161.0 644 - 0.6370
162.0 648 - 0.6400
163.0 652 - 0.6422
164.0 656 - 0.6436
165.0 660 - 0.6460
166.0 664 - 0.6473
167.0 668 - 0.6497
168.0 672 - 0.6515
169.0 676 - 0.6545
170.0 680 - 0.6574
171.0 684 - 0.6595
172.0 688 - 0.6616
173.0 692 - 0.6639
174.0 696 - 0.6658
175.0 700 - 0.6676
176.0 704 - 0.6697
177.0 708 - 0.6713
178.0 712 - 0.6746
179.0 716 - 0.6765
180.0 720 - 0.6784
181.0 724 - 0.6806
182.0 728 - 0.6820
183.0 732 - 0.6838
184.0 736 - 0.6867
185.0 740 - 0.6882
186.0 744 - 0.6913
187.0 748 - 0.6930
188.0 752 - 0.6943
189.0 756 - 0.6979
190.0 760 - 0.6982
191.0 764 - 0.7008
192.0 768 - 0.7038
193.0 772 - 0.7059
194.0 776 - 0.7062
195.0 780 - 0.7083
196.0 784 - 0.7112
197.0 788 - 0.7139
198.0 792 - 0.7163
199.0 796 - 0.7181
200.0 800 - 0.7188
201.0 804 - 0.7208
202.0 808 - 0.7223
203.0 812 - 0.7245
204.0 816 - 0.7264
205.0 820 - 0.7296
206.0 824 - 0.7325
207.0 828 - 0.7340
208.0 832 - 0.7362
209.0 836 - 0.7373
210.0 840 - 0.7394
211.0 844 - 0.7416
212.0 848 - 0.7420
213.0 852 - 0.7434
214.0 856 - 0.7444
215.0 860 - 0.7466
216.0 864 - 0.7479
217.0 868 - 0.7523
218.0 872 - 0.7540
219.0 876 - 0.7553
220.0 880 - 0.7558
221.0 884 - 0.7586
222.0 888 - 0.7596
223.0 892 - 0.7613
224.0 896 - 0.7637
225.0 900 - 0.7652
226.0 904 - 0.7667
227.0 908 - 0.7682
228.0 912 - 0.7698
229.0 916 - 0.7715
230.0 920 - 0.7729
231.0 924 - 0.7757
232.0 928 - 0.7767
233.0 932 - 0.7783
234.0 936 - 0.7802
235.0 940 - 0.7814
236.0 944 - 0.7835
237.0 948 - 0.7859
238.0 952 - 0.7874
239.0 956 - 0.7887
240.0 960 - 0.7903
241.0 964 - 0.7927
242.0 968 - 0.7940
243.0 972 - 0.7958
244.0 976 - 0.7973
245.0 980 - 0.7991
246.0 984 - 0.8009
247.0 988 - 0.8021
248.0 992 - 0.8035
249.0 996 - 0.8043
250.0 1000 3.2323 0.8057
251.0 1004 - 0.8071
252.0 1008 - 0.8088
253.0 1012 - 0.8104
254.0 1016 - 0.8112
255.0 1020 - 0.8123
256.0 1024 - 0.8135
257.0 1028 - 0.8154
258.0 1032 - 0.8167
259.0 1036 - 0.8174
260.0 1040 - 0.8187
261.0 1044 - 0.8187
262.0 1048 - 0.8210
263.0 1052 - 0.8216
264.0 1056 - 0.8242
265.0 1060 - 0.8260
266.0 1064 - 0.8267
267.0 1068 - 0.8278
268.0 1072 - 0.8294
269.0 1076 - 0.8309
270.0 1080 - 0.8319
271.0 1084 - 0.8325
272.0 1088 - 0.8346
273.0 1092 - 0.8353
274.0 1096 - 0.8362
275.0 1100 - 0.8373
276.0 1104 - 0.8385
277.0 1108 - 0.8392
278.0 1112 - 0.8405
279.0 1116 - 0.8431
280.0 1120 - 0.8453
281.0 1124 - 0.8464
282.0 1128 - 0.8480
283.0 1132 - 0.8476
284.0 1136 - 0.8491
285.0 1140 - 0.8509
286.0 1144 - 0.8508
287.0 1148 - 0.8513
288.0 1152 - 0.8525
289.0 1156 - 0.8534
290.0 1160 - 0.8543
291.0 1164 - 0.8554
292.0 1168 - 0.8572
293.0 1172 - 0.8590
1.0 4 - 0.8591
2.0 8 - 0.8591
3.0 12 - 0.8591
4.0 16 - 0.8591
5.0 20 - 0.8591
6.0 24 - 0.8591
7.0 28 - 0.8592
8.0 32 - 0.8592
9.0 36 - 0.8589
10.0 40 - 0.8593
11.0 44 - 0.8587
12.0 48 - 0.8590
13.0 52 - 0.8591
14.0 56 - 0.8591
15.0 60 - 0.8593
16.0 64 - 0.8593
17.0 68 - 0.8595
18.0 72 - 0.8598
19.0 76 - 0.8602
20.0 80 - 0.8606
21.0 84 - 0.8614
22.0 88 - 0.8617
23.0 92 - 0.8617
24.0 96 - 0.8621
25.0 100 - 0.8622
26.0 104 - 0.8626
27.0 108 - 0.8626
28.0 112 - 0.8626
29.0 116 - 0.8629
30.0 120 - 0.8629
31.0 124 - 0.8629
32.0 128 - 0.8629
33.0 132 - 0.8628
34.0 136 - 0.8625
35.0 140 - 0.8626
36.0 144 - 0.8628
37.0 148 - 0.8628
38.0 152 - 0.8630
39.0 156 - 0.8635
40.0 160 - 0.8635
41.0 164 - 0.8642
42.0 168 - 0.8646
43.0 172 - 0.8649
44.0 176 - 0.8654
45.0 180 - 0.8658
46.0 184 - 0.8662
47.0 188 - 0.8666
48.0 192 - 0.8676
49.0 196 - 0.8676
50.0 200 - 0.8677
51.0 204 - 0.8681
52.0 208 - 0.8680
53.0 212 - 0.8677
54.0 216 - 0.8682
55.0 220 - 0.8683
56.0 224 - 0.8687
57.0 228 - 0.8687
58.0 232 - 0.8687
59.0 236 - 0.8689
60.0 240 - 0.8690
61.0 244 - 0.8697
62.0 248 - 0.8700
63.0 252 - 0.8706
64.0 256 - 0.8706
65.0 260 - 0.8709
66.0 264 - 0.8711
67.0 268 - 0.8711
68.0 272 - 0.8716
69.0 276 - 0.8717
70.0 280 - 0.8728
71.0 284 - 0.8728
72.0 288 - 0.8729
73.0 292 - 0.8732
74.0 296 - 0.8734
75.0 300 - 0.8741
76.0 304 - 0.8736
77.0 308 - 0.8739
78.0 312 - 0.8742
79.0 316 - 0.8743
80.0 320 - 0.8744
81.0 324 - 0.8749
82.0 328 - 0.8750
83.0 332 - 0.8760
84.0 336 - 0.8758
85.0 340 - 0.8765
86.0 344 - 0.8771
87.0 348 - 0.8771
88.0 352 - 0.8768
89.0 356 - 0.8778
90.0 360 - 0.8778
91.0 364 - 0.8784
92.0 368 - 0.8793
93.0 372 - 0.8795
94.0 376 - 0.8796
95.0 380 - 0.8801
96.0 384 - 0.8803
97.0 388 - 0.8806
98.0 392 - 0.8811
99.0 396 - 0.8815
100.0 400 - 0.8814
101.0 404 - 0.8822
102.0 408 - 0.8829
103.0 412 - 0.8827
104.0 416 - 0.8827
105.0 420 - 0.8838
106.0 424 - 0.8836
107.0 428 - 0.8841
108.0 432 - 0.8848
109.0 436 - 0.8853
110.0 440 - 0.8857
111.0 444 - 0.8858
112.0 448 - 0.8863
113.0 452 - 0.8868
114.0 456 - 0.8877
115.0 460 - 0.8887
116.0 464 - 0.8887
117.0 468 - 0.8883
118.0 472 - 0.8883
119.0 476 - 0.8887
120.0 480 - 0.8888
121.0 484 - 0.8902
122.0 488 - 0.8900
123.0 492 - 0.8906
124.0 496 - 0.8908
125.0 500 2.6383 0.8909
126.0 504 - 0.8913
127.0 508 - 0.8917
128.0 512 - 0.8922
129.0 516 - 0.8923
130.0 520 - 0.8924
131.0 524 - 0.8924
132.0 528 - 0.8927
133.0 532 - 0.8925
134.0 536 - 0.8931
135.0 540 - 0.8941
136.0 544 - 0.8953
137.0 548 - 0.8957
138.0 552 - 0.8966
139.0 556 - 0.8980
140.0 560 - 0.8985
141.0 564 - 0.8979
142.0 568 - 0.8993
143.0 572 - 0.8987
144.0 576 - 0.8998
145.0 580 - 0.8994
146.0 584 - 0.9002
147.0 588 - 0.9006
148.0 592 - 0.9016
149.0 596 - 0.9025
150.0 600 - 0.9026
151.0 604 - 0.9030
152.0 608 - 0.9035
153.0 612 - 0.9043
154.0 616 - 0.9050
155.0 620 - 0.9060
156.0 624 - 0.9060
157.0 628 - 0.9067
158.0 632 - 0.9062
159.0 636 - 0.9065
160.0 640 - 0.9083
161.0 644 - 0.9085
162.0 648 - 0.9090
163.0 652 - 0.9093
164.0 656 - 0.9098
165.0 660 - 0.9101
166.0 664 - 0.9104
167.0 668 - 0.9111
168.0 672 - 0.9121
169.0 676 - 0.9123
170.0 680 - 0.9130
171.0 684 - 0.9134
172.0 688 - 0.9135
173.0 692 - 0.9139
174.0 696 - 0.9145
175.0 700 - 0.9143
176.0 704 - 0.9146
177.0 708 - 0.9155
178.0 712 - 0.9164
179.0 716 - 0.9185
180.0 720 - 0.9192
181.0 724 - 0.9192
182.0 728 - 0.9192
183.0 732 - 0.9205
184.0 736 - 0.9208
185.0 740 - 0.9210
186.0 744 - 0.9216
187.0 748 - 0.9216
188.0 752 - 0.9219
189.0 756 - 0.9218
190.0 760 - 0.9221
191.0 764 - 0.9233
192.0 768 - 0.9240
193.0 772 - 0.9253
194.0 776 - 0.9255
195.0 780 - 0.9256
196.0 784 - 0.9259
197.0 788 - 0.9260
198.0 792 - 0.9268
199.0 796 - 0.9271
200.0 800 - 0.9271
201.0 804 - 0.9273
202.0 808 - 0.9282
203.0 812 - 0.9280
204.0 816 - 0.9278
205.0 820 - 0.9290
206.0 824 - 0.9294
207.0 828 - 0.9302
208.0 832 - 0.9307
209.0 836 - 0.9304
210.0 840 - 0.9304
211.0 844 - 0.9316
212.0 848 - 0.9320
213.0 852 - 0.9325
214.0 856 - 0.9332
215.0 860 - 0.9335
216.0 864 - 0.9348
217.0 868 - 0.9359
218.0 872 - 0.9362
219.0 876 - 0.9362
220.0 880 - 0.9362
221.0 884 - 0.9362
222.0 888 - 0.9363
223.0 892 - 0.9368
224.0 896 - 0.9374
225.0 900 - 0.9381
226.0 904 - 0.9378
227.0 908 - 0.9378
228.0 912 - 0.9376
229.0 916 - 0.9373
230.0 920 - 0.9380
231.0 924 - 0.9381
232.0 928 - 0.9386
233.0 932 - 0.9399
234.0 936 - 0.9404
235.0 940 - 0.9402
236.0 944 - 0.9406
237.0 948 - 0.9406
238.0 952 - 0.9404
239.0 956 - 0.9410
240.0 960 - 0.9412
241.0 964 - 0.9412
242.0 968 - 0.9423
243.0 972 - 0.9429
244.0 976 - 0.9429
245.0 980 - 0.9432
246.0 984 - 0.9432
247.0 988 - 0.9439
248.0 992 - 0.9449
249.0 996 - 0.9452
250.0 1000 2.507 0.9461
251.0 1004 - 0.9464
252.0 1008 - 0.9464
253.0 1012 - 0.9460
254.0 1016 - 0.9456
255.0 1020 - 0.9471
256.0 1024 - 0.9468
257.0 1028 - 0.9472
258.0 1032 - 0.9476
259.0 1036 - 0.9481
260.0 1040 - 0.9490
261.0 1044 - 0.9488
262.0 1048 - 0.9488
263.0 1052 - 0.9478
264.0 1056 - 0.9475
265.0 1060 - 0.9485
266.0 1064 - 0.9490
267.0 1068 - 0.9487
268.0 1072 - 0.9484
269.0 1076 - 0.9490
270.0 1080 - 0.9495
271.0 1084 - 0.9506
272.0 1088 - 0.9513
273.0 1092 - 0.9518
274.0 1096 - 0.9522
275.0 1100 - 0.9526
276.0 1104 - 0.9522
277.0 1108 - 0.9526
278.0 1112 - 0.9531
279.0 1116 - 0.9537
280.0 1120 - 0.9533
281.0 1124 - 0.9523
282.0 1128 - 0.9544
283.0 1132 - 0.9546
284.0 1136 - 0.9553
285.0 1140 - 0.9554
286.0 1144 - 0.9565
287.0 1148 - 0.9568
288.0 1152 - 0.9569
289.0 1156 - 0.9569
290.0 1160 - 0.9567
291.0 1164 - 0.9568
292.0 1168 - 0.9574
293.0 1172 - 0.9574
294.0 1176 - 0.9574
295.0 1180 - 0.9580
296.0 1184 - 0.9586
297.0 1188 - 0.9588
298.0 1192 - 0.9594
299.0 1196 - 0.9596
300.0 1200 - 0.9602
301.0 1204 - 0.9604
302.0 1208 - 0.9598
303.0 1212 - 0.9605
304.0 1216 - 0.9608
305.0 1220 - 0.9614
306.0 1224 - 0.9620
307.0 1228 - 0.9621
308.0 1232 - 0.9630
309.0 1236 - 0.9633
310.0 1240 - 0.9644
311.0 1244 - 0.9644
312.0 1248 - 0.9643
313.0 1252 - 0.9644
314.0 1256 - 0.9644
315.0 1260 - 0.9646
316.0 1264 - 0.9661
317.0 1268 - 0.9665
318.0 1272 - 0.9664
319.0 1276 - 0.9666
320.0 1280 - 0.9673
321.0 1284 - 0.9681
322.0 1288 - 0.9681
323.0 1292 - 0.9684
324.0 1296 - 0.9685
325.0 1300 - 0.9686
326.0 1304 - 0.9681
327.0 1308 - 0.9686
328.0 1312 - 0.9684
329.0 1316 - 0.9685
330.0 1320 - 0.9688
331.0 1324 - 0.9690
332.0 1328 - 0.9691
333.0 1332 - 0.9695
334.0 1336 - 0.9701
335.0 1340 - 0.9714
336.0 1344 - 0.9713
337.0 1348 - 0.9719
338.0 1352 - 0.9720
339.0 1356 - 0.9720
340.0 1360 - 0.9720
341.0 1364 - 0.9720
342.0 1368 - 0.9725
343.0 1372 - 0.9728
344.0 1376 - 0.9725
345.0 1380 - 0.9723
346.0 1384 - 0.9727
347.0 1388 - 0.9723
348.0 1392 - 0.9729
349.0 1396 - 0.9735
350.0 1400 - 0.9735
351.0 1404 - 0.9732
352.0 1408 - 0.9739
353.0 1412 - 0.9742
354.0 1416 - 0.9747
355.0 1420 - 0.9744
356.0 1424 - 0.9744
357.0 1428 - 0.9744
358.0 1432 - 0.9743
359.0 1436 - 0.9740
360.0 1440 - 0.9742
361.0 1444 - 0.9739
362.0 1448 - 0.9736
363.0 1452 - 0.9746
364.0 1456 - 0.9752
365.0 1460 - 0.9752
366.0 1464 - 0.9752
367.0 1468 - 0.9748
368.0 1472 - 0.9748
369.0 1476 - 0.9749
370.0 1480 - 0.9755
371.0 1484 - 0.9753
372.0 1488 - 0.9759
373.0 1492 - 0.9760
374.0 1496 - 0.9755
375.0 1500 2.391 0.9755
376.0 1504 - 0.9757
377.0 1508 - 0.9757
378.0 1512 - 0.9760
379.0 1516 - 0.9762
380.0 1520 - 0.9760
381.0 1524 - 0.9762
382.0 1528 - 0.9761
383.0 1532 - 0.9761
384.0 1536 - 0.9770
385.0 1540 - 0.9774
386.0 1544 - 0.9777
387.0 1548 - 0.9780
388.0 1552 - 0.9774
389.0 1556 - 0.9768
390.0 1560 - 0.9780
391.0 1564 - 0.9789
392.0 1568 - 0.9789
393.0 1572 - 0.9786
394.0 1576 - 0.9786
395.0 1580 - 0.9783
396.0 1584 - 0.9789
397.0 1588 - 0.9790
398.0 1592 - 0.9787
399.0 1596 - 0.9788
400.0 1600 - 0.9782
401.0 1604 - 0.9782
402.0 1608 - 0.9782
403.0 1612 - 0.9782
404.0 1616 - 0.9788
405.0 1620 - 0.9789
406.0 1624 - 0.9789
407.0 1628 - 0.9793
408.0 1632 - 0.9794
409.0 1636 - 0.9797
410.0 1640 - 0.9803
411.0 1644 - 0.9800
412.0 1648 - 0.9796
413.0 1652 - 0.9799
414.0 1656 - 0.9799
415.0 1660 - 0.9796
416.0 1664 - 0.9797
417.0 1668 - 0.9797
418.0 1672 - 0.9800
419.0 1676 - 0.9803
420.0 1680 - 0.9809
421.0 1684 - 0.9806
422.0 1688 - 0.9809
423.0 1692 - 0.9812
424.0 1696 - 0.9810
425.0 1700 - 0.9806
426.0 1704 - 0.9806
427.0 1708 - 0.9799
428.0 1712 - 0.9796
429.0 1716 - 0.9802
430.0 1720 - 0.9802
431.0 1724 - 0.9810
432.0 1728 - 0.9810
433.0 1732 - 0.9807
434.0 1736 - 0.9810
435.0 1740 - 0.9813
436.0 1744 - 0.9816
437.0 1748 - 0.9820
438.0 1752 - 0.9816
439.0 1756 - 0.9816
440.0 1760 - 0.9813
441.0 1764 - 0.9820
442.0 1768 - 0.9823
443.0 1772 - 0.9820
444.0 1776 - 0.9823
445.0 1780 - 0.9826
446.0 1784 - 0.9823
447.0 1788 - 0.9832
448.0 1792 - 0.9832
449.0 1796 - 0.9832
450.0 1800 - 0.9835
451.0 1804 - 0.9835
452.0 1808 - 0.9835
453.0 1812 - 0.9835
454.0 1816 - 0.9835
455.0 1820 - 0.9835
456.0 1824 - 0.9838
457.0 1828 - 0.9838
458.0 1832 - 0.9841
459.0 1836 - 0.9841
460.0 1840 - 0.9841
461.0 1844 - 0.9841
462.0 1848 - 0.9844
463.0 1852 - 0.9850
464.0 1856 - 0.9844
465.0 1860 - 0.9841
466.0 1864 - 0.9844
467.0 1868 - 0.9850
468.0 1872 - 0.9853
469.0 1876 - 0.9850
470.0 1880 - 0.9856
471.0 1884 - 0.9856
472.0 1888 - 0.9856
473.0 1892 - 0.9853
474.0 1896 - 0.9856
475.0 1900 - 0.9850
476.0 1904 - 0.9850
477.0 1908 - 0.9850
478.0 1912 - 0.9850
479.0 1916 - 0.9853
480.0 1920 - 0.9856
481.0 1924 - 0.9859
482.0 1928 - 0.9862
483.0 1932 - 0.9862
484.0 1936 - 0.9862
485.0 1940 - 0.9862
486.0 1944 - 0.9859
487.0 1948 - 0.9859
488.0 1952 - 0.9856
489.0 1956 - 0.9859
490.0 1960 - 0.9859
491.0 1964 - 0.9859
492.0 1968 - 0.9856
493.0 1972 - 0.9856
494.0 1976 - 0.9856
495.0 1980 - 0.9856
496.0 1984 - 0.9862
497.0 1988 - 0.9862
498.0 1992 - 0.9856
499.0 1996 - 0.9856
500.0 2000 2.3269 0.9856
501.0 2004 - 0.9856
502.0 2008 - 0.9856
503.0 2012 - 0.9859
504.0 2016 - 0.9862
505.0 2020 - 0.9866
506.0 2024 - 0.9866
507.0 2028 - 0.9869
508.0 2032 - 0.9869
509.0 2036 - 0.9869
510.0 2040 - 0.9875
511.0 2044 - 0.9875
512.0 2048 - 0.9875
513.0 2052 - 0.9872
514.0 2056 - 0.9872
515.0 2060 - 0.9869
516.0 2064 - 0.9869
517.0 2068 - 0.9866
518.0 2072 - 0.9866
519.0 2076 - 0.9862
520.0 2080 - 0.9866
521.0 2084 - 0.9866
522.0 2088 - 0.9862
523.0 2092 - 0.9866
524.0 2096 - 0.9862
525.0 2100 - 0.9866
526.0 2104 - 0.9872
527.0 2108 - 0.9878
528.0 2112 - 0.9878
529.0 2116 - 0.9881
530.0 2120 - 0.9881
531.0 2124 - 0.9881
532.0 2128 - 0.9878
533.0 2132 - 0.9878
534.0 2136 - 0.9878
535.0 2140 - 0.9878
536.0 2144 - 0.9875
537.0 2148 - 0.9878
538.0 2152 - 0.9872
539.0 2156 - 0.9869
540.0 2160 - 0.9872
541.0 2164 - 0.9875
542.0 2168 - 0.9878
543.0 2172 - 0.9878
544.0 2176 - 0.9881
545.0 2180 - 0.9888
546.0 2184 - 0.9894
547.0 2188 - 0.9894
548.0 2192 - 0.9897
549.0 2196 - 0.9897
550.0 2200 - 0.9897
551.0 2204 - 0.9897
552.0 2208 - 0.9897
553.0 2212 - 0.9894
554.0 2216 - 0.9891
555.0 2220 - 0.9888
556.0 2224 - 0.9884
557.0 2228 - 0.9884
558.0 2232 - 0.9884
559.0 2236 - 0.9888
560.0 2240 - 0.9891
561.0 2244 - 0.9891
562.0 2248 - 0.9894
563.0 2252 - 0.9897
564.0 2256 - 0.9897
565.0 2260 - 0.9897
566.0 2264 - 0.9900
567.0 2268 - 0.9903
568.0 2272 - 0.9900
569.0 2276 - 0.9903
570.0 2280 - 0.9900
571.0 2284 - 0.9900
572.0 2288 - 0.9900
573.0 2292 - 0.9900
574.0 2296 - 0.9903
575.0 2300 - 0.9903
576.0 2304 - 0.9903
577.0 2308 - 0.9903
578.0 2312 - 0.9903
579.0 2316 - 0.9897
580.0 2320 - 0.9897
581.0 2324 - 0.9897
582.0 2328 - 0.9897
583.0 2332 - 0.9900
584.0 2336 - 0.9900
585.0 2340 - 0.9900
586.0 2344 - 0.9904
587.0 2348 - 0.9904
588.0 2352 - 0.9904
589.0 2356 - 0.9901
590.0 2360 - 0.9901
591.0 2364 - 0.9898
592.0 2368 - 0.9898
593.0 2372 - 0.9898
594.0 2376 - 0.9901
595.0 2380 - 0.9901
596.0 2384 - 0.9901
597.0 2388 - 0.9901
598.0 2392 - 0.9901
599.0 2396 - 0.9904
600.0 2400 - 0.9904
601.0 2404 - 0.9904
602.0 2408 - 0.9904
603.0 2412 - 0.9904
604.0 2416 - 0.9907
605.0 2420 - 0.9904
606.0 2424 - 0.9904
607.0 2428 - 0.9904
608.0 2432 - 0.9904
609.0 2436 - 0.9904
610.0 2440 - 0.9904
611.0 2444 - 0.9907
612.0 2448 - 0.9907
613.0 2452 - 0.9907
614.0 2456 - 0.9907
615.0 2460 - 0.9907
616.0 2464 - 0.9907
617.0 2468 - 0.9910
618.0 2472 - 0.9910
619.0 2476 - 0.9910
620.0 2480 - 0.9910
621.0 2484 - 0.9913
622.0 2488 - 0.9910
623.0 2492 - 0.9907
624.0 2496 - 0.9907
625.0 2500 2.2939 0.9907
626.0 2504 - 0.9907
627.0 2508 - 0.9907
628.0 2512 - 0.9907
629.0 2516 - 0.9910
630.0 2520 - 0.9910
631.0 2524 - 0.9910
632.0 2528 - 0.9910
633.0 2532 - 0.9910
634.0 2536 - 0.9913
635.0 2540 - 0.9916
636.0 2544 - 0.9916
637.0 2548 - 0.9913
638.0 2552 - 0.9910
639.0 2556 - 0.9910
640.0 2560 - 0.9910
641.0 2564 - 0.9910
642.0 2568 - 0.9910
643.0 2572 - 0.9913
644.0 2576 - 0.9916
645.0 2580 - 0.9916
646.0 2584 - 0.9916
647.0 2588 - 0.9916
648.0 2592 - 0.9916
649.0 2596 - 0.9919
650.0 2600 - 0.9919
651.0 2604 - 0.9916
652.0 2608 - 0.9916
653.0 2612 - 0.9919
654.0 2616 - 0.9919
655.0 2620 - 0.9919
656.0 2624 - 0.9916
657.0 2628 - 0.9916
658.0 2632 - 0.9916
659.0 2636 - 0.9916
660.0 2640 - 0.9919
661.0 2644 - 0.9922
662.0 2648 - 0.9922
663.0 2652 - 0.9922
664.0 2656 - 0.9922
665.0 2660 - 0.9919
666.0 2664 - 0.9922
667.0 2668 - 0.9922
668.0 2672 - 0.9925
669.0 2676 - 0.9928
670.0 2680 - 0.9925
671.0 2684 - 0.9928
672.0 2688 - 0.9925
673.0 2692 - 0.9925
674.0 2696 - 0.9928
675.0 2700 - 0.9928
676.0 2704 - 0.9931
677.0 2708 - 0.9931
678.0 2712 - 0.9931
679.0 2716 - 0.9928
680.0 2720 - 0.9925
681.0 2724 - 0.9922
682.0 2728 - 0.9922
683.0 2732 - 0.9922
684.0 2736 - 0.9922
685.0 2740 - 0.9922
686.0 2744 - 0.9922
687.0 2748 - 0.9925
688.0 2752 - 0.9931
689.0 2756 - 0.9931
690.0 2760 - 0.9935
691.0 2764 - 0.9935
692.0 2768 - 0.9935
693.0 2772 - 0.9931
694.0 2776 - 0.9931
695.0 2780 - 0.9931
696.0 2784 - 0.9928
697.0 2788 - 0.9928
698.0 2792 - 0.9925
699.0 2796 - 0.9925
700.0 2800 - 0.9928
701.0 2804 - 0.9931
702.0 2808 - 0.9931
703.0 2812 - 0.9931
704.0 2816 - 0.9931
705.0 2820 - 0.9931
706.0 2824 - 0.9928
707.0 2828 - 0.9931
708.0 2832 - 0.9928
709.0 2836 - 0.9928
710.0 2840 - 0.9928
711.0 2844 - 0.9925
712.0 2848 - 0.9922
713.0 2852 - 0.9922
714.0 2856 - 0.9922
715.0 2860 - 0.9922
716.0 2864 - 0.9922
717.0 2868 - 0.9922
718.0 2872 - 0.9928
719.0 2876 - 0.9928
720.0 2880 - 0.9928
721.0 2884 - 0.9928
722.0 2888 - 0.9931
723.0 2892 - 0.9928
724.0 2896 - 0.9928
725.0 2900 - 0.9928
726.0 2904 - 0.9931
727.0 2908 - 0.9931
728.0 2912 - 0.9931
729.0 2916 - 0.9931
730.0 2920 - 0.9928
731.0 2924 - 0.9928
732.0 2928 - 0.9931
733.0 2932 - 0.9931
734.0 2936 - 0.9928
735.0 2940 - 0.9928
736.0 2944 - 0.9931
737.0 2948 - 0.9931
738.0 2952 - 0.9928
739.0 2956 - 0.9928
740.0 2960 - 0.9928
741.0 2964 - 0.9928
742.0 2968 - 0.9928
743.0 2972 - 0.9928
744.0 2976 - 0.9935
745.0 2980 - 0.9935
746.0 2984 - 0.9935
747.0 2988 - 0.9935
748.0 2992 - 0.9935
749.0 2996 - 0.9935
750.0 3000 2.2749 0.9935
751.0 3004 - 0.9935
752.0 3008 - 0.9938
753.0 3012 - 0.9938
754.0 3016 - 0.9938
755.0 3020 - 0.9941
756.0 3024 - 0.9938
757.0 3028 - 0.9938
758.0 3032 - 0.9938
759.0 3036 - 0.9938
760.0 3040 - 0.9938
761.0 3044 - 0.9938
762.0 3048 - 0.9938
763.0 3052 - 0.9939
764.0 3056 - 0.9942
765.0 3060 - 0.9942
766.0 3064 - 0.9939
767.0 3068 - 0.9939
768.0 3072 - 0.9942
769.0 3076 - 0.9939
770.0 3080 - 0.9939
771.0 3084 - 0.9938
772.0 3088 - 0.9938
773.0 3092 - 0.9938
774.0 3096 - 0.9938
775.0 3100 - 0.9938
776.0 3104 - 0.9938
777.0 3108 - 0.9935
778.0 3112 - 0.9935
779.0 3116 - 0.9935
780.0 3120 - 0.9938
781.0 3124 - 0.9938
782.0 3128 - 0.9935
783.0 3132 - 0.9935
784.0 3136 - 0.9935
785.0 3140 - 0.9931
786.0 3144 - 0.9931
787.0 3148 - 0.9931
788.0 3152 - 0.9931
789.0 3156 - 0.9931
790.0 3160 - 0.9931
791.0 3164 - 0.9931
792.0 3168 - 0.9935
793.0 3172 - 0.9935
794.0 3176 - 0.9935
795.0 3180 - 0.9935
796.0 3184 - 0.9935
797.0 3188 - 0.9933
798.0 3192 - 0.9933
799.0 3196 - 0.9936
800.0 3200 - 0.9936
801.0 3204 - 0.9933
802.0 3208 - 0.9935
803.0 3212 - 0.9938
804.0 3216 - 0.9935
805.0 3220 - 0.9931
806.0 3224 - 0.9936
807.0 3228 - 0.9936
808.0 3232 - 0.9939
809.0 3236 - 0.9942
810.0 3240 - 0.9945
811.0 3244 - 0.9945
812.0 3248 - 0.9945
813.0 3252 - 0.9945
814.0 3256 - 0.9942
815.0 3260 - 0.9939
816.0 3264 - 0.9942
817.0 3268 - 0.9939
818.0 3272 - 0.9942
819.0 3276 - 0.9942
820.0 3280 - 0.9942
821.0 3284 - 0.9945
822.0 3288 - 0.9945
823.0 3292 - 0.9945
824.0 3296 - 0.9945
825.0 3300 - 0.9945
826.0 3304 - 0.9945
827.0 3308 - 0.9945
828.0 3312 - 0.9945
829.0 3316 - 0.9945
830.0 3320 - 0.9945
831.0 3324 - 0.9945
832.0 3328 - 0.9945
833.0 3332 - 0.9945
834.0 3336 - 0.9948
835.0 3340 - 0.9948
836.0 3344 - 0.9948
837.0 3348 - 0.9948
838.0 3352 - 0.9948
839.0 3356 - 0.9948
840.0 3360 - 0.9948
841.0 3364 - 0.9948
842.0 3368 - 0.9948
843.0 3372 - 0.9948
844.0 3376 - 0.9945
845.0 3380 - 0.9945
846.0 3384 - 0.9948
847.0 3388 - 0.9948
848.0 3392 - 0.9948
849.0 3396 - 0.9948
850.0 3400 - 0.9948
851.0 3404 - 0.9948
852.0 3408 - 0.9948
853.0 3412 - 0.9948
854.0 3416 - 0.9948
855.0 3420 - 0.9948
856.0 3424 - 0.9948
857.0 3428 - 0.9945
858.0 3432 - 0.9945
859.0 3436 - 0.9945
860.0 3440 - 0.9945
861.0 3444 - 0.9945
862.0 3448 - 0.9948
863.0 3452 - 0.9948
864.0 3456 - 0.9948
865.0 3460 - 0.9948
866.0 3464 - 0.9948
867.0 3468 - 0.9948
868.0 3472 - 0.9948
869.0 3476 - 0.9948
870.0 3480 - 0.9948
871.0 3484 - 0.9948
872.0 3488 - 0.9948
873.0 3492 - 0.9948
874.0 3496 - 0.9948
875.0 3500 2.268 0.9948
876.0 3504 - 0.9948
877.0 3508 - 0.9948
878.0 3512 - 0.9948
879.0 3516 - 0.9948
880.0 3520 - 0.9948
881.0 3524 - 0.9948
882.0 3528 - 0.9948
883.0 3532 - 0.9948
884.0 3536 - 0.9948
885.0 3540 - 0.9948
886.0 3544 - 0.9948
887.0 3548 - 0.9948
888.0 3552 - 0.9948
889.0 3556 - 0.9948
890.0 3560 - 0.9948
891.0 3564 - 0.9948
892.0 3568 - 0.9948
893.0 3572 - 0.9948
894.0 3576 - 0.9948
895.0 3580 - 0.9948
896.0 3584 - 0.9948
897.0 3588 - 0.9948
898.0 3592 - 0.9948
899.0 3596 - 0.9948
900.0 3600 - 0.9948
901.0 3604 - 0.9948
902.0 3608 - 0.9948
903.0 3612 - 0.9948
904.0 3616 - 0.9948
905.0 3620 - 0.9948
906.0 3624 - 0.9948
907.0 3628 - 0.9948
908.0 3632 - 0.9948
909.0 3636 - 0.9948
910.0 3640 - 0.9948
911.0 3644 - 0.9948
912.0 3648 - 0.9948
913.0 3652 - 0.9948
914.0 3656 - 0.9948
915.0 3660 - 0.9948
916.0 3664 - 0.9948
917.0 3668 - 0.9948
918.0 3672 - 0.9948
919.0 3676 - 0.9948
920.0 3680 - 0.9948
921.0 3684 - 0.9948
922.0 3688 - 0.9948
923.0 3692 - 0.9948
924.0 3696 - 0.9948
925.0 3700 - 0.9948
926.0 3704 - 0.9948
927.0 3708 - 0.9948
928.0 3712 - 0.9948
929.0 3716 - 0.9948
930.0 3720 - 0.9948
931.0 3724 - 0.9948
932.0 3728 - 0.9948
933.0 3732 - 0.9948
934.0 3736 - 0.9948
935.0 3740 - 0.9948
936.0 3744 - 0.9948
937.0 3748 - 0.9948
938.0 3752 - 0.9948
939.0 3756 - 0.9948
940.0 3760 - 0.9948
941.0 3764 - 0.9948
942.0 3768 - 0.9948
943.0 3772 - 0.9948
944.0 3776 - 0.9948
945.0 3780 - 0.9948
946.0 3784 - 0.9948
947.0 3788 - 0.9948
948.0 3792 - 0.9948
949.0 3796 - 0.9948
950.0 3800 - 0.9948
951.0 3804 - 0.9948
952.0 3808 - 0.9948
953.0 3812 - 0.9948
954.0 3816 - 0.9948
955.0 3820 - 0.9948
956.0 3824 - 0.9948
957.0 3828 - 0.9948
958.0 3832 - 0.9948
959.0 3836 - 0.9948
960.0 3840 - 0.9948
961.0 3844 - 0.9948
962.0 3848 - 0.9948
963.0 3852 - 0.9948
964.0 3856 - 0.9948
965.0 3860 - 0.9948
966.0 3864 - 0.9948
967.0 3868 - 0.9948
968.0 3872 - 0.9948
969.0 3876 - 0.9948
970.0 3880 - 0.9948
971.0 3884 - 0.9948
972.0 3888 - 0.9948
973.0 3892 - 0.9948
974.0 3896 - 0.9948
975.0 3900 - 0.9948
976.0 3904 - 0.9948
977.0 3908 - 0.9948
978.0 3912 - 0.9948
979.0 3916 - 0.9948
980.0 3920 - 0.9948
981.0 3924 - 0.9948
982.0 3928 - 0.9948
983.0 3932 - 0.9948
984.0 3936 - 0.9948
985.0 3940 - 0.9948
986.0 3944 - 0.9948
987.0 3948 - 0.9948
988.0 3952 - 0.9948
989.0 3956 - 0.9948
990.0 3960 - 0.9948
991.0 3964 - 0.9948
992.0 3968 - 0.9948
993.0 3972 - 0.9948
994.0 3976 - 0.9948
995.0 3980 - 0.9948
996.0 3984 - 0.9948
997.0 3988 - 0.9948
998.0 3992 - 0.9948
999.0 3996 - 0.9948
1000.0 4000 2.265 0.9948
1001.0 4004 - 0.9948
1002.0 4008 - 0.9948
1003.0 4012 - 0.9948
1004.0 4016 - 0.9948
1005.0 4020 - 0.9948
1006.0 4024 - 0.9948
1007.0 4028 - 0.9948
1008.0 4032 - 0.9948
1009.0 4036 - 0.9948
1010.0 4040 - 0.9948
1011.0 4044 - 0.9948
1012.0 4048 - 0.9948
1013.0 4052 - 0.9948
1014.0 4056 - 0.9948
1015.0 4060 - 0.9948
1016.0 4064 - 0.9948
1017.0 4068 - 0.9948
1018.0 4072 - 0.9948
1019.0 4076 - 0.9948
1020.0 4080 - 0.9948
1021.0 4084 - 0.9948
1022.0 4088 - 0.9948
1023.0 4092 - 0.9948
1024.0 4096 - 0.9948
1025.0 4100 - 0.9948
1026.0 4104 - 0.9948
1027.0 4108 - 0.9948
1028.0 4112 - 0.9948
1029.0 4116 - 0.9948
1030.0 4120 - 0.9948
1031.0 4124 - 0.9948
1032.0 4128 - 0.9948
1033.0 4132 - 0.9948
1034.0 4136 - 0.9948
1035.0 4140 - 0.9948
1036.0 4144 - 0.9948
1037.0 4148 - 0.9948
1038.0 4152 - 0.9948
1039.0 4156 - 0.9948
1040.0 4160 - 0.9948
1041.0 4164 - 0.9948
1042.0 4168 - 0.9948
1043.0 4172 - 0.9948
1044.0 4176 - 0.9948
1045.0 4180 - 0.9948
1046.0 4184 - 0.9948
1047.0 4188 - 0.9948
1048.0 4192 - 0.9948
1049.0 4196 - 0.9948
1050.0 4200 - 0.9948
1051.0 4204 - 0.9948
1052.0 4208 - 0.9948
1053.0 4212 - 0.9948
1054.0 4216 - 0.9948
1055.0 4220 - 0.9948
1056.0 4224 - 0.9948
1057.0 4228 - 0.9948
1058.0 4232 - 0.9948
1059.0 4236 - 0.9948
1060.0 4240 - 0.9948
1061.0 4244 - 0.9948
1062.0 4248 - 0.9948
1063.0 4252 - 0.9948
1064.0 4256 - 0.9948
1065.0 4260 - 0.9948
1066.0 4264 - 0.9948
1067.0 4268 - 0.9948
1068.0 4272 - 0.9948
1069.0 4276 - 0.9948
1070.0 4280 - 0.9948
1071.0 4284 - 0.9948
1072.0 4288 - 0.9948
1073.0 4292 - 0.9948
1074.0 4296 - 0.9948
1075.0 4300 - 0.9948
1076.0 4304 - 0.9948
1077.0 4308 - 0.9948
1078.0 4312 - 0.9948
1079.0 4316 - 0.9948
1080.0 4320 - 0.9948
1081.0 4324 - 0.9948
1082.0 4328 - 0.9948
1083.0 4332 - 0.9948
1084.0 4336 - 0.9948
1085.0 4340 - 0.9948
1086.0 4344 - 0.9948
1087.0 4348 - 0.9948
1088.0 4352 - 0.9948
1089.0 4356 - 0.9948
1090.0 4360 - 0.9948
1091.0 4364 - 0.9948
1092.0 4368 - 0.9948
1093.0 4372 - 0.9948
1094.0 4376 - 0.9948
1095.0 4380 - 0.9948
1096.0 4384 - 0.9948
1097.0 4388 - 0.9948
1098.0 4392 - 0.9948
1099.0 4396 - 0.9948
1100.0 4400 - 0.9948
1101.0 4404 - 0.9948
1102.0 4408 - 0.9948
1103.0 4412 - 0.9948
1104.0 4416 - 0.9948
1105.0 4420 - 0.9948
1106.0 4424 - 0.9948
1107.0 4428 - 0.9948
1108.0 4432 - 0.9948
1109.0 4436 - 0.9948
1110.0 4440 - 0.9948
1111.0 4444 - 0.9948
1112.0 4448 - 0.9948
1113.0 4452 - 0.9948
1114.0 4456 - 0.9948
1115.0 4460 - 0.9948
1116.0 4464 - 0.9948
1117.0 4468 - 0.9948
1118.0 4472 - 0.9948
1119.0 4476 - 0.9948
1120.0 4480 - 0.9948
1121.0 4484 - 0.9948
1122.0 4488 - 0.9948
1123.0 4492 - 0.9948
1124.0 4496 - 0.9948
1125.0 4500 2.2654 0.9948
1126.0 4504 - 0.9948
1127.0 4508 - 0.9948
1128.0 4512 - 0.9948
1129.0 4516 - 0.9948
1130.0 4520 - 0.9948
1131.0 4524 - 0.9948
1132.0 4528 - 0.9948
1133.0 4532 - 0.9948
1134.0 4536 - 0.9948
1135.0 4540 - 0.9948
1136.0 4544 - 0.9948
1137.0 4548 - 0.9948
1138.0 4552 - 0.9948
1139.0 4556 - 0.9948
1140.0 4560 - 0.9948
1141.0 4564 - 0.9948
1142.0 4568 - 0.9948
1143.0 4572 - 0.9948
1144.0 4576 - 0.9948
1145.0 4580 - 0.9948
1146.0 4584 - 0.9948
1147.0 4588 - 0.9948
1148.0 4592 - 0.9948
1149.0 4596 - 0.9948
1150.0 4600 - 0.9948
1151.0 4604 - 0.9948
1152.0 4608 - 0.9948
1153.0 4612 - 0.9948
1154.0 4616 - 0.9948
1155.0 4620 - 0.9948
1156.0 4624 - 0.9948
1157.0 4628 - 0.9948
1158.0 4632 - 0.9948
1159.0 4636 - 0.9948
1160.0 4640 - 0.9948
1161.0 4644 - 0.9948
1162.0 4648 - 0.9948
1163.0 4652 - 0.9948
1164.0 4656 - 0.9948
1165.0 4660 - 0.9948
1166.0 4664 - 0.9948
1167.0 4668 - 0.9948
1168.0 4672 - 0.9948
1169.0 4676 - 0.9948
1170.0 4680 - 0.9948
1171.0 4684 - 0.9948
1172.0 4688 - 0.9948
1173.0 4692 - 0.9948
1174.0 4696 - 0.9948
1175.0 4700 - 0.9948
1176.0 4704 - 0.9948
1177.0 4708 - 0.9948
1178.0 4712 - 0.9948
1179.0 4716 - 0.9948
1180.0 4720 - 0.9948
1181.0 4724 - 0.9948
1182.0 4728 - 0.9948
1183.0 4732 - 0.9948
1184.0 4736 - 0.9948
1185.0 4740 - 0.9948
1186.0 4744 - 0.9948
1187.0 4748 - 0.9948
1188.0 4752 - 0.9948
1189.0 4756 - 0.9948
1190.0 4760 - 0.9948
1191.0 4764 - 0.9948
1192.0 4768 - 0.9948
1193.0 4772 - 0.9948
1194.0 4776 - 0.9948
1195.0 4780 - 0.9948
1196.0 4784 - 0.9948
1197.0 4788 - 0.9948
1198.0 4792 - 0.9948
1199.0 4796 - 0.9948
1200.0 4800 - 0.9948

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.44.0
  • PyTorch: 2.4.0
  • Accelerate: 0.34.2
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}