Edit model card

SentenceTransformer based on cointegrated/rubert-tiny2

This is a sentence-transformers model finetuned from cointegrated/rubert-tiny2. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: cointegrated/rubert-tiny2
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 312 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("WpythonW/RUbert-tiny_custom_test_2")
# Run inference
sentences = [
    'когда я получу деньги за отпуск',
    'Отпускные начисляются не позднее чем за три рабочих дня до даты начала отпуска.',
    'Создайте, пожалуйста, обращение в ИТ поддержку на портале support',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7761
cosine_accuracy@3 0.9337
cosine_accuracy@5 0.9675
cosine_precision@1 0.7761
cosine_precision@3 0.3112
cosine_precision@5 0.1935
cosine_precision@10 0.0985
cosine_recall@1 0.7761
cosine_recall@3 0.9337
cosine_recall@5 0.9675
cosine_recall@10 0.9853
cosine_ndcg@10 0.8899
cosine_mrr@10 0.8582
cosine_map@100 0.859
dot_accuracy@1 0.7761
dot_accuracy@3 0.9337
dot_accuracy@5 0.9675
dot_precision@1 0.7761
dot_precision@3 0.3112
dot_precision@5 0.1935
dot_precision@10 0.0985
dot_recall@1 0.7761
dot_recall@3 0.9337
dot_recall@5 0.9675
dot_recall@10 0.9853
dot_ndcg@10 0.8899
dot_mrr@10 0.8582
dot_map@100 0.859

Information Retrieval

Metric Value
cosine_accuracy@1 0.9896
cosine_accuracy@3 1.0
cosine_accuracy@5 1.0
cosine_precision@1 0.9896
cosine_precision@3 0.3333
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.9896
cosine_recall@3 1.0
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.9962
cosine_mrr@10 0.9948
cosine_map@100 0.9948
dot_accuracy@1 0.9896
dot_accuracy@3 1.0
dot_accuracy@5 1.0
dot_precision@1 0.9896
dot_precision@3 0.3333
dot_precision@5 0.2
dot_precision@10 0.1
dot_recall@1 0.9896
dot_recall@3 1.0
dot_recall@5 1.0
dot_recall@10 1.0
dot_ndcg@10 0.9962
dot_mrr@10 0.9948
dot_map@100 0.9948

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,630 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 3 tokens
    • mean: 12.4 tokens
    • max: 74 tokens
    • min: 7 tokens
    • mean: 61.91 tokens
    • max: 371 tokens
  • Samples:
    sentence_0 sentence_1
    Не отображается вкладка премия в ЛК. В консультации написали, что личный кабинет не передан на обслуживание в сервисную функцию HR Поддержку X5 Создайте, пожалуйста, обращение в ИТ поддержку на портале support
    как пересмотреть зарплату? По данному вопросу Вы можете обратиться в кадровую службу, создав заявку "Консультация по HR вопросам"
    поменять телефон сотруднику Кнопка "изменить номер" телефона находится в личном разделе в ЛК. Если доступа к ЛК нет, для смены номера телефона, обратитесь в поддержку
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • num_train_epochs: 1200
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 512
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1200
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Click to expand
Epoch Step Training Loss test_cosine_map@100
1.0 4 - 0.1922
2.0 8 - 0.1922
3.0 12 - 0.1925
4.0 16 - 0.1927
5.0 20 - 0.1929
6.0 24 - 0.1931
7.0 28 - 0.1934
8.0 32 - 0.1942
9.0 36 - 0.1951
10.0 40 - 0.1960
11.0 44 - 0.1977
12.0 48 - 0.1993
13.0 52 - 0.2011
14.0 56 - 0.2024
15.0 60 - 0.2042
16.0 64 - 0.2047
17.0 68 - 0.2064
18.0 72 - 0.2081
19.0 76 - 0.2106
20.0 80 - 0.2123
21.0 84 - 0.2132
22.0 88 - 0.2148
23.0 92 - 0.2173
24.0 96 - 0.2200
25.0 100 - 0.2216
26.0 104 - 0.2241
27.0 108 - 0.2262
28.0 112 - 0.2286
29.0 116 - 0.2317
30.0 120 - 0.2339
31.0 124 - 0.2353
32.0 128 - 0.2392
33.0 132 - 0.2421
34.0 136 - 0.2442
35.0 140 - 0.2469
36.0 144 - 0.2501
37.0 148 - 0.2543
38.0 152 - 0.2565
39.0 156 - 0.2603
40.0 160 - 0.2643
41.0 164 - 0.2668
42.0 168 - 0.2688
43.0 172 - 0.2711
44.0 176 - 0.2743
45.0 180 - 0.2767
46.0 184 - 0.2810
47.0 188 - 0.2838
48.0 192 - 0.2869
49.0 196 - 0.2896
50.0 200 - 0.2940
51.0 204 - 0.2972
52.0 208 - 0.3012
53.0 212 - 0.3053
54.0 216 - 0.3072
55.0 220 - 0.3097
56.0 224 - 0.3133
57.0 228 - 0.3171
58.0 232 - 0.3220
59.0 236 - 0.3249
60.0 240 - 0.3274
61.0 244 - 0.3304
62.0 248 - 0.3336
63.0 252 - 0.3357
64.0 256 - 0.3398
65.0 260 - 0.3438
66.0 264 - 0.3463
67.0 268 - 0.3498
68.0 272 - 0.3535
69.0 276 - 0.3580
70.0 280 - 0.3606
71.0 284 - 0.3634
72.0 288 - 0.3654
73.0 292 - 0.3679
74.0 296 - 0.3723
75.0 300 - 0.3750
76.0 304 - 0.3781
77.0 308 - 0.3810
78.0 312 - 0.3840
79.0 316 - 0.3871
80.0 320 - 0.3914
81.0 324 - 0.3958
82.0 328 - 0.3991
83.0 332 - 0.4025
84.0 336 - 0.4053
85.0 340 - 0.4091
86.0 344 - 0.4125
87.0 348 - 0.4148
88.0 352 - 0.4176
89.0 356 - 0.4212
90.0 360 - 0.4240
91.0 364 - 0.4277
92.0 368 - 0.4315
93.0 372 - 0.4338
94.0 376 - 0.4363
95.0 380 - 0.4392
96.0 384 - 0.4423
97.0 388 - 0.4460
98.0 392 - 0.4487
99.0 396 - 0.4526
100.0 400 - 0.4563
101.0 404 - 0.4597
102.0 408 - 0.4644
103.0 412 - 0.4678
104.0 416 - 0.4707
105.0 420 - 0.4750
106.0 424 - 0.4791
107.0 428 - 0.4820
108.0 432 - 0.4847
109.0 436 - 0.4895
110.0 440 - 0.4916
111.0 444 - 0.4961
112.0 448 - 0.4990
113.0 452 - 0.5032
114.0 456 - 0.5065
115.0 460 - 0.5093
116.0 464 - 0.5135
117.0 468 - 0.5175
118.0 472 - 0.5199
119.0 476 - 0.5243
120.0 480 - 0.5266
121.0 484 - 0.5297
122.0 488 - 0.5324
123.0 492 - 0.5353
124.0 496 - 0.5378
125.0 500 4.6316 0.5404
126.0 504 - 0.5449
127.0 508 - 0.5473
128.0 512 - 0.5500
129.0 516 - 0.5535
130.0 520 - 0.5553
131.0 524 - 0.5570
132.0 528 - 0.5597
133.0 532 - 0.5625
134.0 536 - 0.5660
135.0 540 - 0.5693
136.0 544 - 0.5713
137.0 548 - 0.5745
138.0 552 - 0.5767
139.0 556 - 0.5798
140.0 560 - 0.5835
141.0 564 - 0.5853
142.0 568 - 0.5863
143.0 572 - 0.5909
144.0 576 - 0.5933
145.0 580 - 0.5970
146.0 584 - 0.5995
147.0 588 - 0.6008
148.0 592 - 0.6040
149.0 596 - 0.6073
150.0 600 - 0.6097
151.0 604 - 0.6121
152.0 608 - 0.6163
153.0 612 - 0.6178
154.0 616 - 0.6205
155.0 620 - 0.6223
156.0 624 - 0.6242
157.0 628 - 0.6265
158.0 632 - 0.6290
159.0 636 - 0.6326
160.0 640 - 0.6347
161.0 644 - 0.6370
162.0 648 - 0.6400
163.0 652 - 0.6422
164.0 656 - 0.6436
165.0 660 - 0.6460
166.0 664 - 0.6473
167.0 668 - 0.6497
168.0 672 - 0.6515
169.0 676 - 0.6545
170.0 680 - 0.6574
171.0 684 - 0.6595
172.0 688 - 0.6616
173.0 692 - 0.6639
174.0 696 - 0.6658
175.0 700 - 0.6676
176.0 704 - 0.6697
177.0 708 - 0.6713
178.0 712 - 0.6746
179.0 716 - 0.6765
180.0 720 - 0.6784
181.0 724 - 0.6806
182.0 728 - 0.6820
183.0 732 - 0.6838
184.0 736 - 0.6867
185.0 740 - 0.6882
186.0 744 - 0.6913
187.0 748 - 0.6930
188.0 752 - 0.6943
189.0 756 - 0.6979
190.0 760 - 0.6982
191.0 764 - 0.7008
192.0 768 - 0.7038
193.0 772 - 0.7059
194.0 776 - 0.7062
195.0 780 - 0.7083
196.0 784 - 0.7112
197.0 788 - 0.7139
198.0 792 - 0.7163
199.0 796 - 0.7181
200.0 800 - 0.7188
201.0 804 - 0.7208
202.0 808 - 0.7223
203.0 812 - 0.7245
204.0 816 - 0.7264
205.0 820 - 0.7296
206.0 824 - 0.7325
207.0 828 - 0.7340
208.0 832 - 0.7362
209.0 836 - 0.7373
210.0 840 - 0.7394
211.0 844 - 0.7416
212.0 848 - 0.7420
213.0 852 - 0.7434
214.0 856 - 0.7444
215.0 860 - 0.7466
216.0 864 - 0.7479
217.0 868 - 0.7523
218.0 872 - 0.7540
219.0 876 - 0.7553
220.0 880 - 0.7558
221.0 884 - 0.7586
222.0 888 - 0.7596
223.0 892 - 0.7613
224.0 896 - 0.7637
225.0 900 - 0.7652
226.0 904 - 0.7667
227.0 908 - 0.7682
228.0 912 - 0.7698
229.0 916 - 0.7715
230.0 920 - 0.7729
231.0 924 - 0.7757
232.0 928 - 0.7767
233.0 932 - 0.7783
234.0 936 - 0.7802
235.0 940 - 0.7814
236.0 944 - 0.7835
237.0 948 - 0.7859
238.0 952 - 0.7874
239.0 956 - 0.7887
240.0 960 - 0.7903
241.0 964 - 0.7927
242.0 968 - 0.7940
243.0 972 - 0.7958
244.0 976 - 0.7973
245.0 980 - 0.7991
246.0 984 - 0.8009
247.0 988 - 0.8021
248.0 992 - 0.8035
249.0 996 - 0.8043
250.0 1000 3.2323 0.8057
251.0 1004 - 0.8071
252.0 1008 - 0.8088
253.0 1012 - 0.8104
254.0 1016 - 0.8112
255.0 1020 - 0.8123
256.0 1024 - 0.8135
257.0 1028 - 0.8154
258.0 1032 - 0.8167
259.0 1036 - 0.8174
260.0 1040 - 0.8187
261.0 1044 - 0.8187
262.0 1048 - 0.8210
263.0 1052 - 0.8216
264.0 1056 - 0.8242
265.0 1060 - 0.8260
266.0 1064 - 0.8267
267.0 1068 - 0.8278
268.0 1072 - 0.8294
269.0 1076 - 0.8309
270.0 1080 - 0.8319
271.0 1084 - 0.8325
272.0 1088 - 0.8346
273.0 1092 - 0.8353
274.0 1096 - 0.8362
275.0 1100 - 0.8373
276.0 1104 - 0.8385
277.0 1108 - 0.8392
278.0 1112 - 0.8405
279.0 1116 - 0.8431
280.0 1120 - 0.8453
281.0 1124 - 0.8464
282.0 1128 - 0.8480
283.0 1132 - 0.8476
284.0 1136 - 0.8491
285.0 1140 - 0.8509
286.0 1144 - 0.8508
287.0 1148 - 0.8513
288.0 1152 - 0.8525
289.0 1156 - 0.8534
290.0 1160 - 0.8543
291.0 1164 - 0.8554
292.0 1168 - 0.8572
293.0 1172 - 0.8590
1.0 4 - 0.8591
2.0 8 - 0.8591
3.0 12 - 0.8591
4.0 16 - 0.8591
5.0 20 - 0.8591
6.0 24 - 0.8591
7.0 28 - 0.8592
8.0 32 - 0.8592
9.0 36 - 0.8589
10.0 40 - 0.8593
11.0 44 - 0.8587
12.0 48 - 0.8590
13.0 52 - 0.8591
14.0 56 - 0.8591
15.0 60 - 0.8593
16.0 64 - 0.8593
17.0 68 - 0.8595
18.0 72 - 0.8598
19.0 76 - 0.8602
20.0 80 - 0.8606
21.0 84 - 0.8614
22.0 88 - 0.8617
23.0 92 - 0.8617
24.0 96 - 0.8621
25.0 100 - 0.8622
26.0 104 - 0.8626
27.0 108 - 0.8626
28.0 112 - 0.8626
29.0 116 - 0.8629
30.0 120 - 0.8629
31.0 124 - 0.8629
32.0 128 - 0.8629
33.0 132 - 0.8628
34.0 136 - 0.8625
35.0 140 - 0.8626
36.0 144 - 0.8628
37.0 148 - 0.8628
38.0 152 - 0.8630
39.0 156 - 0.8635
40.0 160 - 0.8635
41.0 164 - 0.8642
42.0 168 - 0.8646
43.0 172 - 0.8649
44.0 176 - 0.8654
45.0 180 - 0.8658
46.0 184 - 0.8662
47.0 188 - 0.8666
48.0 192 - 0.8676
49.0 196 - 0.8676
50.0 200 - 0.8677
51.0 204 - 0.8681
52.0 208 - 0.8680
53.0 212 - 0.8677
54.0 216 - 0.8682
55.0 220 - 0.8683
56.0 224 - 0.8687
57.0 228 - 0.8687
58.0 232 - 0.8687
59.0 236 - 0.8689
60.0 240 - 0.8690
61.0 244 - 0.8697
62.0 248 - 0.8700
63.0 252 - 0.8706
64.0 256 - 0.8706
65.0 260 - 0.8709
66.0 264 - 0.8711
67.0 268 - 0.8711
68.0 272 - 0.8716
69.0 276 - 0.8717
70.0 280 - 0.8728
71.0 284 - 0.8728
72.0 288 - 0.8729
73.0 292 - 0.8732
74.0 296 - 0.8734
75.0 300 - 0.8741
76.0 304 - 0.8736
77.0 308 - 0.8739
78.0 312 - 0.8742
79.0 316 - 0.8743
80.0 320 - 0.8744
81.0 324 - 0.8749
82.0 328 - 0.8750
83.0 332 - 0.8760
84.0 336 - 0.8758
85.0 340 - 0.8765
86.0 344 - 0.8771
87.0 348 - 0.8771
88.0 352 - 0.8768
89.0 356 - 0.8778
90.0 360 - 0.8778
91.0 364 - 0.8784
92.0 368 - 0.8793
93.0 372 - 0.8795
94.0 376 - 0.8796
95.0 380 - 0.8801
96.0 384 - 0.8803
97.0 388 - 0.8806
98.0 392 - 0.8811
99.0 396 - 0.8815
100.0 400 - 0.8814
101.0 404 - 0.8822
102.0 408 - 0.8829
103.0 412 - 0.8827
104.0 416 - 0.8827
105.0 420 - 0.8838
106.0 424 - 0.8836
107.0 428 - 0.8841
108.0 432 - 0.8848
109.0 436 - 0.8853
110.0 440 - 0.8857
111.0 444 - 0.8858
112.0 448 - 0.8863
113.0 452 - 0.8868
114.0 456 - 0.8877
115.0 460 - 0.8887
116.0 464 - 0.8887
117.0 468 - 0.8883
118.0 472 - 0.8883
119.0 476 - 0.8887
120.0 480 - 0.8888
121.0 484 - 0.8902
122.0 488 - 0.8900
123.0 492 - 0.8906
124.0 496 - 0.8908
125.0 500 2.6383 0.8909
126.0 504 - 0.8913
127.0 508 - 0.8917
128.0 512 - 0.8922
129.0 516 - 0.8923
130.0 520 - 0.8924
131.0 524 - 0.8924
132.0 528 - 0.8927
133.0 532 - 0.8925
134.0 536 - 0.8931
135.0 540 - 0.8941
136.0 544 - 0.8953
137.0 548 - 0.8957
138.0 552 - 0.8966
139.0 556 - 0.8980
140.0 560 - 0.8985
141.0 564 - 0.8979
142.0 568 - 0.8993
143.0 572 - 0.8987
144.0 576 - 0.8998
145.0 580 - 0.8994
146.0 584 - 0.9002
147.0 588 - 0.9006
148.0 592 - 0.9016
149.0 596 - 0.9025
150.0 600 - 0.9026
151.0 604 - 0.9030
152.0 608 - 0.9035
153.0 612 - 0.9043
154.0 616 - 0.9050
155.0 620 - 0.9060
156.0 624 - 0.9060
157.0 628 - 0.9067
158.0 632 - 0.9062
159.0 636 - 0.9065
160.0 640 - 0.9083
161.0 644 - 0.9085
162.0 648 - 0.9090
163.0 652 - 0.9093
164.0 656 - 0.9098
165.0 660 - 0.9101
166.0 664 - 0.9104
167.0 668 - 0.9111
168.0 672 - 0.9121
169.0 676 - 0.9123
170.0 680 - 0.9130
171.0 684 - 0.9134
172.0 688 - 0.9135
173.0 692 - 0.9139
174.0 696 - 0.9145
175.0 700 - 0.9143
176.0 704 - 0.9146
177.0 708 - 0.9155
178.0 712 - 0.9164
179.0 716 - 0.9185
180.0 720 - 0.9192
181.0 724 - 0.9192
182.0 728 - 0.9192
183.0 732 - 0.9205
184.0 736 - 0.9208
185.0 740 - 0.9210
186.0 744 - 0.9216
187.0 748 - 0.9216
188.0 752 - 0.9219
189.0 756 - 0.9218
190.0 760 - 0.9221
191.0 764 - 0.9233
192.0 768 - 0.9240
193.0 772 - 0.9253
194.0 776 - 0.9255
195.0 780 - 0.9256
196.0 784 - 0.9259
197.0 788 - 0.9260
198.0 792 - 0.9268
199.0 796 - 0.9271
200.0 800 - 0.9271
201.0 804 - 0.9273
202.0 808 - 0.9282
203.0 812 - 0.9280
204.0 816 - 0.9278
205.0 820 - 0.9290
206.0 824 - 0.9294
207.0 828 - 0.9302
208.0 832 - 0.9307
209.0 836 - 0.9304
210.0 840 - 0.9304
211.0 844 - 0.9316
212.0 848 - 0.9320
213.0 852 - 0.9325
214.0 856 - 0.9332
215.0 860 - 0.9335
216.0 864 - 0.9348
217.0 868 - 0.9359
218.0 872 - 0.9362
219.0 876 - 0.9362
220.0 880 - 0.9362
221.0 884 - 0.9362
222.0 888 - 0.9363
223.0 892 - 0.9368
224.0 896 - 0.9374
225.0 900 - 0.9381
226.0 904 - 0.9378
227.0 908 - 0.9378
228.0 912 - 0.9376
229.0 916 - 0.9373
230.0 920 - 0.9380
231.0 924 - 0.9381
232.0 928 - 0.9386
233.0 932 - 0.9399
234.0 936 - 0.9404
235.0 940 - 0.9402
236.0 944 - 0.9406
237.0 948 - 0.9406
238.0 952 - 0.9404
239.0 956 - 0.9410
240.0 960 - 0.9412
241.0 964 - 0.9412
242.0 968 - 0.9423
243.0 972 - 0.9429
244.0 976 - 0.9429
245.0 980 - 0.9432
246.0 984 - 0.9432
247.0 988 - 0.9439
248.0 992 - 0.9449
249.0 996 - 0.9452
250.0 1000 2.507 0.9461
251.0 1004 - 0.9464
252.0 1008 - 0.9464
253.0 1012 - 0.9460
254.0 1016 - 0.9456
255.0 1020 - 0.9471
256.0 1024 - 0.9468
257.0 1028 - 0.9472
258.0 1032 - 0.9476
259.0 1036 - 0.9481
260.0 1040 - 0.9490
261.0 1044 - 0.9488
262.0 1048 - 0.9488
263.0 1052 - 0.9478
264.0 1056 - 0.9475
265.0 1060 - 0.9485
266.0 1064 - 0.9490
267.0 1068 - 0.9487
268.0 1072 - 0.9484
269.0 1076 - 0.9490
270.0 1080 - 0.9495
271.0 1084 - 0.9506
272.0 1088 - 0.9513
273.0 1092 - 0.9518
274.0 1096 - 0.9522
275.0 1100 - 0.9526
276.0 1104 - 0.9522
277.0 1108 - 0.9526
278.0 1112 - 0.9531
279.0 1116 - 0.9537
280.0 1120 - 0.9533
281.0 1124 - 0.9523
282.0 1128 - 0.9544
283.0 1132 - 0.9546
284.0 1136 - 0.9553
285.0 1140 - 0.9554
286.0 1144 - 0.9565
287.0 1148 - 0.9568
288.0 1152 - 0.9569
289.0 1156 - 0.9569
290.0 1160 - 0.9567
291.0 1164 - 0.9568
292.0 1168 - 0.9574
293.0 1172 - 0.9574
294.0 1176 - 0.9574
295.0 1180 - 0.9580
296.0 1184 - 0.9586
297.0 1188 - 0.9588
298.0 1192 - 0.9594
299.0 1196 - 0.9596
300.0 1200 - 0.9602
301.0 1204 - 0.9604
302.0 1208 - 0.9598
303.0 1212 - 0.9605
304.0 1216 - 0.9608
305.0 1220 - 0.9614
306.0 1224 - 0.9620
307.0 1228 - 0.9621
308.0 1232 - 0.9630
309.0 1236 - 0.9633
310.0 1240 - 0.9644
311.0 1244 - 0.9644
312.0 1248 - 0.9643
313.0 1252 - 0.9644
314.0 1256 - 0.9644
315.0 1260 - 0.9646
316.0 1264 - 0.9661
317.0 1268 - 0.9665
318.0 1272 - 0.9664
319.0 1276 - 0.9666
320.0 1280 - 0.9673
321.0 1284 - 0.9681
322.0 1288 - 0.9681
323.0 1292 - 0.9684
324.0 1296 - 0.9685
325.0 1300 - 0.9686
326.0 1304 - 0.9681
327.0 1308 - 0.9686
328.0 1312 - 0.9684
329.0 1316 - 0.9685
330.0 1320 - 0.9688
331.0 1324 - 0.9690
332.0 1328 - 0.9691
333.0 1332 - 0.9695
334.0 1336 - 0.9701
335.0 1340 - 0.9714
336.0 1344 - 0.9713
337.0 1348 - 0.9719
338.0 1352 - 0.9720
339.0 1356 - 0.9720
340.0 1360 - 0.9720
341.0 1364 - 0.9720
342.0 1368 - 0.9725
343.0 1372 - 0.9728
344.0 1376 - 0.9725
345.0 1380 - 0.9723
346.0 1384 - 0.9727
347.0 1388 - 0.9723
348.0 1392 - 0.9729
349.0 1396 - 0.9735
350.0 1400 - 0.9735
351.0 1404 - 0.9732
352.0 1408 - 0.9739
353.0 1412 - 0.9742
354.0 1416 - 0.9747
355.0 1420 - 0.9744
356.0 1424 - 0.9744
357.0 1428 - 0.9744
358.0 1432 - 0.9743
359.0 1436 - 0.9740
360.0 1440 - 0.9742
361.0 1444 - 0.9739
362.0 1448 - 0.9736
363.0 1452 - 0.9746
364.0 1456 - 0.9752
365.0 1460 - 0.9752
366.0 1464 - 0.9752
367.0 1468 - 0.9748
368.0 1472 - 0.9748
369.0 1476 - 0.9749
370.0 1480 - 0.9755
371.0 1484 - 0.9753
372.0 1488 - 0.9759
373.0 1492 - 0.9760
374.0 1496 - 0.9755
375.0 1500 2.391 0.9755
376.0 1504 - 0.9757
377.0 1508 - 0.9757
378.0 1512 - 0.9760
379.0 1516 - 0.9762
380.0 1520 - 0.9760
381.0 1524 - 0.9762
382.0 1528 - 0.9761
383.0 1532 - 0.9761
384.0 1536 - 0.9770
385.0 1540 - 0.9774
386.0 1544 - 0.9777
387.0 1548 - 0.9780
388.0 1552 - 0.9774
389.0 1556 - 0.9768
390.0 1560 - 0.9780
391.0 1564 - 0.9789
392.0 1568 - 0.9789
393.0 1572 - 0.9786
394.0 1576 - 0.9786
395.0 1580 - 0.9783
396.0 1584 - 0.9789
397.0 1588 - 0.9790
398.0 1592 - 0.9787
399.0 1596 - 0.9788
400.0 1600 - 0.9782
401.0 1604 - 0.9782
402.0 1608 - 0.9782
403.0 1612 - 0.9782
404.0 1616 - 0.9788
405.0 1620 - 0.9789
406.0 1624 - 0.9789
407.0 1628 - 0.9793
408.0 1632 - 0.9794
409.0 1636 - 0.9797
410.0 1640 - 0.9803
411.0 1644 - 0.9800
412.0 1648 - 0.9796
413.0 1652 - 0.9799
414.0 1656 - 0.9799
415.0 1660 - 0.9796
416.0 1664 - 0.9797
417.0 1668 - 0.9797
418.0 1672 - 0.9800
419.0 1676 - 0.9803
420.0 1680 - 0.9809
421.0 1684 - 0.9806
422.0 1688 - 0.9809
423.0 1692 - 0.9812
424.0 1696 - 0.9810
425.0 1700 - 0.9806
426.0 1704 - 0.9806
427.0 1708 - 0.9799
428.0 1712 - 0.9796
429.0 1716 - 0.9802
430.0 1720 - 0.9802
431.0 1724 - 0.9810
432.0 1728 - 0.9810
433.0 1732 - 0.9807
434.0 1736 - 0.9810
435.0 1740 - 0.9813
436.0 1744 - 0.9816
437.0 1748 - 0.9820
438.0 1752 - 0.9816
439.0 1756 - 0.9816
440.0 1760 - 0.9813
441.0 1764 - 0.9820
442.0 1768 - 0.9823
443.0 1772 - 0.9820
444.0 1776 - 0.9823
445.0 1780 - 0.9826
446.0 1784 - 0.9823
447.0 1788 - 0.9832
448.0 1792 - 0.9832
449.0 1796 - 0.9832
450.0 1800 - 0.9835
451.0 1804 - 0.9835
452.0 1808 - 0.9835
453.0 1812 - 0.9835
454.0 1816 - 0.9835
455.0 1820 - 0.9835
456.0 1824 - 0.9838
457.0 1828 - 0.9838
458.0 1832 - 0.9841
459.0 1836 - 0.9841
460.0 1840 - 0.9841
461.0 1844 - 0.9841
462.0 1848 - 0.9844
463.0 1852 - 0.9850
464.0 1856 - 0.9844
465.0 1860 - 0.9841
466.0 1864 - 0.9844
467.0 1868 - 0.9850
468.0 1872 - 0.9853
469.0 1876 - 0.9850
470.0 1880 - 0.9856
471.0 1884 - 0.9856
472.0 1888 - 0.9856
473.0 1892 - 0.9853
474.0 1896 - 0.9856
475.0 1900 - 0.9850
476.0 1904 - 0.9850
477.0 1908 - 0.9850
478.0 1912 - 0.9850
479.0 1916 - 0.9853
480.0 1920 - 0.9856
481.0 1924 - 0.9859
482.0 1928 - 0.9862
483.0 1932 - 0.9862
484.0 1936 - 0.9862
485.0 1940 - 0.9862
486.0 1944 - 0.9859
487.0 1948 - 0.9859
488.0 1952 - 0.9856
489.0 1956 - 0.9859
490.0 1960 - 0.9859
491.0 1964 - 0.9859
492.0 1968 - 0.9856
493.0 1972 - 0.9856
494.0 1976 - 0.9856
495.0 1980 - 0.9856
496.0 1984 - 0.9862
497.0 1988 - 0.9862
498.0 1992 - 0.9856
499.0 1996 - 0.9856
500.0 2000 2.3269 0.9856
501.0 2004 - 0.9856
502.0 2008 - 0.9856
503.0 2012 - 0.9859
504.0 2016 - 0.9862
505.0 2020 - 0.9866
506.0 2024 - 0.9866
507.0 2028 - 0.9869
508.0 2032 - 0.9869
509.0 2036 - 0.9869
510.0 2040 - 0.9875
511.0 2044 - 0.9875
512.0 2048 - 0.9875
513.0 2052 - 0.9872
514.0 2056 - 0.9872
515.0 2060 - 0.9869
516.0 2064 - 0.9869
517.0 2068 - 0.9866
518.0 2072 - 0.9866
519.0 2076 - 0.9862
520.0 2080 - 0.9866
521.0 2084 - 0.9866
522.0 2088 - 0.9862
523.0 2092 - 0.9866
524.0 2096 - 0.9862
525.0 2100 - 0.9866
526.0 2104 - 0.9872
527.0 2108 - 0.9878
528.0 2112 - 0.9878
529.0 2116 - 0.9881
530.0 2120 - 0.9881
531.0 2124 - 0.9881
532.0 2128 - 0.9878
533.0 2132 - 0.9878
534.0 2136 - 0.9878
535.0 2140 - 0.9878
536.0 2144 - 0.9875
537.0 2148 - 0.9878
538.0 2152 - 0.9872
539.0 2156 - 0.9869
540.0 2160 - 0.9872
541.0 2164 - 0.9875
542.0 2168 - 0.9878
543.0 2172 - 0.9878
544.0 2176 - 0.9881
545.0 2180 - 0.9888
546.0 2184 - 0.9894
547.0 2188 - 0.9894
548.0 2192 - 0.9897
549.0 2196 - 0.9897
550.0 2200 - 0.9897
551.0 2204 - 0.9897
552.0 2208 - 0.9897
553.0 2212 - 0.9894
554.0 2216 - 0.9891
555.0 2220 - 0.9888
556.0 2224 - 0.9884
557.0 2228 - 0.9884
558.0 2232 - 0.9884
559.0 2236 - 0.9888
560.0 2240 - 0.9891
561.0 2244 - 0.9891
562.0 2248 - 0.9894
563.0 2252 - 0.9897
564.0 2256 - 0.9897
565.0 2260 - 0.9897
566.0 2264 - 0.9900
567.0 2268 - 0.9903
568.0 2272 - 0.9900
569.0 2276 - 0.9903
570.0 2280 - 0.9900
571.0 2284 - 0.9900
572.0 2288 - 0.9900
573.0 2292 - 0.9900
574.0 2296 - 0.9903
575.0 2300 - 0.9903
576.0 2304 - 0.9903
577.0 2308 - 0.9903
578.0 2312 - 0.9903
579.0 2316 - 0.9897
580.0 2320 - 0.9897
581.0 2324 - 0.9897
582.0 2328 - 0.9897
583.0 2332 - 0.9900
584.0 2336 - 0.9900
585.0 2340 - 0.9900
586.0 2344 - 0.9904
587.0 2348 - 0.9904
588.0 2352 - 0.9904
589.0 2356 - 0.9901
590.0 2360 - 0.9901
591.0 2364 - 0.9898
592.0 2368 - 0.9898
593.0 2372 - 0.9898
594.0 2376 - 0.9901
595.0 2380 - 0.9901
596.0 2384 - 0.9901
597.0 2388 - 0.9901
598.0 2392 - 0.9901
599.0 2396 - 0.9904
600.0 2400 - 0.9904
601.0 2404 - 0.9904
602.0 2408 - 0.9904
603.0 2412 - 0.9904
604.0 2416 - 0.9907
605.0 2420 - 0.9904
606.0 2424 - 0.9904
607.0 2428 - 0.9904
608.0 2432 - 0.9904
609.0 2436 - 0.9904
610.0 2440 - 0.9904
611.0 2444 - 0.9907
612.0 2448 - 0.9907
613.0 2452 - 0.9907
614.0 2456 - 0.9907
615.0 2460 - 0.9907
616.0 2464 - 0.9907
617.0 2468 - 0.9910
618.0 2472 - 0.9910
619.0 2476 - 0.9910
620.0 2480 - 0.9910
621.0 2484 - 0.9913
622.0 2488 - 0.9910
623.0 2492 - 0.9907
624.0 2496 - 0.9907
625.0 2500 2.2939 0.9907
626.0 2504 - 0.9907
627.0 2508 - 0.9907
628.0 2512 - 0.9907
629.0 2516 - 0.9910
630.0 2520 - 0.9910
631.0 2524 - 0.9910
632.0 2528 - 0.9910
633.0 2532 - 0.9910
634.0 2536 - 0.9913
635.0 2540 - 0.9916
636.0 2544 - 0.9916
637.0 2548 - 0.9913
638.0 2552 - 0.9910
639.0 2556 - 0.9910
640.0 2560 - 0.9910
641.0 2564 - 0.9910
642.0 2568 - 0.9910
643.0 2572 - 0.9913
644.0 2576 - 0.9916
645.0 2580 - 0.9916
646.0 2584 - 0.9916
647.0 2588 - 0.9916
648.0 2592 - 0.9916
649.0 2596 - 0.9919
650.0 2600 - 0.9919
651.0 2604 - 0.9916
652.0 2608 - 0.9916
653.0 2612 - 0.9919
654.0 2616 - 0.9919
655.0 2620 - 0.9919
656.0 2624 - 0.9916
657.0 2628 - 0.9916
658.0 2632 - 0.9916
659.0 2636 - 0.9916
660.0 2640 - 0.9919
661.0 2644 - 0.9922
662.0 2648 - 0.9922
663.0 2652 - 0.9922
664.0 2656 - 0.9922
665.0 2660 - 0.9919
666.0 2664 - 0.9922
667.0 2668 - 0.9922
668.0 2672 - 0.9925
669.0 2676 - 0.9928
670.0 2680 - 0.9925
671.0 2684 - 0.9928
672.0 2688 - 0.9925
673.0 2692 - 0.9925
674.0 2696 - 0.9928
675.0 2700 - 0.9928
676.0 2704 - 0.9931
677.0 2708 - 0.9931
678.0 2712 - 0.9931
679.0 2716 - 0.9928
680.0 2720 - 0.9925
681.0 2724 - 0.9922
682.0 2728 - 0.9922
683.0 2732 - 0.9922
684.0 2736 - 0.9922
685.0 2740 - 0.9922
686.0 2744 - 0.9922
687.0 2748 - 0.9925
688.0 2752 - 0.9931
689.0 2756 - 0.9931
690.0 2760 - 0.9935
691.0 2764 - 0.9935
692.0 2768 - 0.9935
693.0 2772 - 0.9931
694.0 2776 - 0.9931
695.0 2780 - 0.9931
696.0 2784 - 0.9928
697.0 2788 - 0.9928
698.0 2792 - 0.9925
699.0 2796 - 0.9925
700.0 2800 - 0.9928
701.0 2804 - 0.9931
702.0 2808 - 0.9931
703.0 2812 - 0.9931
704.0 2816 - 0.9931
705.0 2820 - 0.9931
706.0 2824 - 0.9928
707.0 2828 - 0.9931
708.0 2832 - 0.9928
709.0 2836 - 0.9928
710.0 2840 - 0.9928
711.0 2844 - 0.9925
712.0 2848 - 0.9922
713.0 2852 - 0.9922
714.0 2856 - 0.9922
715.0 2860 - 0.9922
716.0 2864 - 0.9922
717.0 2868 - 0.9922
718.0 2872 - 0.9928
719.0 2876 - 0.9928
720.0 2880 - 0.9928
721.0 2884 - 0.9928
722.0 2888 - 0.9931
723.0 2892 - 0.9928
724.0 2896 - 0.9928
725.0 2900 - 0.9928
726.0 2904 - 0.9931
727.0 2908 - 0.9931
728.0 2912 - 0.9931
729.0 2916 - 0.9931
730.0 2920 - 0.9928
731.0 2924 - 0.9928
732.0 2928 - 0.9931
733.0 2932 - 0.9931
734.0 2936 - 0.9928
735.0 2940 - 0.9928
736.0 2944 - 0.9931
737.0 2948 - 0.9931
738.0 2952 - 0.9928
739.0 2956 - 0.9928
740.0 2960 - 0.9928
741.0 2964 - 0.9928
742.0 2968 - 0.9928
743.0 2972 - 0.9928
744.0 2976 - 0.9935
745.0 2980 - 0.9935
746.0 2984 - 0.9935
747.0 2988 - 0.9935
748.0 2992 - 0.9935
749.0 2996 - 0.9935
750.0 3000 2.2749 0.9935
751.0 3004 - 0.9935
752.0 3008 - 0.9938
753.0 3012 - 0.9938
754.0 3016 - 0.9938
755.0 3020 - 0.9941
756.0 3024 - 0.9938
757.0 3028 - 0.9938
758.0 3032 - 0.9938
759.0 3036 - 0.9938
760.0 3040 - 0.9938
761.0 3044 - 0.9938
762.0 3048 - 0.9938
763.0 3052 - 0.9939
764.0 3056 - 0.9942
765.0 3060 - 0.9942
766.0 3064 - 0.9939
767.0 3068 - 0.9939
768.0 3072 - 0.9942
769.0 3076 - 0.9939
770.0 3080 - 0.9939
771.0 3084 - 0.9938
772.0 3088 - 0.9938
773.0 3092 - 0.9938
774.0 3096 - 0.9938
775.0 3100 - 0.9938
776.0 3104 - 0.9938
777.0 3108 - 0.9935
778.0 3112 - 0.9935
779.0 3116 - 0.9935
780.0 3120 - 0.9938
781.0 3124 - 0.9938
782.0 3128 - 0.9935
783.0 3132 - 0.9935
784.0 3136 - 0.9935
785.0 3140 - 0.9931
786.0 3144 - 0.9931
787.0 3148 - 0.9931
788.0 3152 - 0.9931
789.0 3156 - 0.9931
790.0 3160 - 0.9931
791.0 3164 - 0.9931
792.0 3168 - 0.9935
793.0 3172 - 0.9935
794.0 3176 - 0.9935
795.0 3180 - 0.9935
796.0 3184 - 0.9935
797.0 3188 - 0.9933
798.0 3192 - 0.9933
799.0 3196 - 0.9936
800.0 3200 - 0.9936
801.0 3204 - 0.9933
802.0 3208 - 0.9935
803.0 3212 - 0.9938
804.0 3216 - 0.9935
805.0 3220 - 0.9931
806.0 3224 - 0.9936
807.0 3228 - 0.9936
808.0 3232 - 0.9939
809.0 3236 - 0.9942
810.0 3240 - 0.9945
811.0 3244 - 0.9945
812.0 3248 - 0.9945
813.0 3252 - 0.9945
814.0 3256 - 0.9942
815.0 3260 - 0.9939
816.0 3264 - 0.9942
817.0 3268 - 0.9939
818.0 3272 - 0.9942
819.0 3276 - 0.9942
820.0 3280 - 0.9942
821.0 3284 - 0.9945
822.0 3288 - 0.9945
823.0 3292 - 0.9945
824.0 3296 - 0.9945
825.0 3300 - 0.9945
826.0 3304 - 0.9945
827.0 3308 - 0.9945
828.0 3312 - 0.9945
829.0 3316 - 0.9945
830.0 3320 - 0.9945
831.0 3324 - 0.9945
832.0 3328 - 0.9945
833.0 3332 - 0.9945
834.0 3336 - 0.9948
835.0 3340 - 0.9948
836.0 3344 - 0.9948
837.0 3348 - 0.9948
838.0 3352 - 0.9948
839.0 3356 - 0.9948
840.0 3360 - 0.9948
841.0 3364 - 0.9948
842.0 3368 - 0.9948
843.0 3372 - 0.9948
844.0 3376 - 0.9945
845.0 3380 - 0.9945
846.0 3384 - 0.9948
847.0 3388 - 0.9948
848.0 3392 - 0.9948
849.0 3396 - 0.9948
850.0 3400 - 0.9948
851.0 3404 - 0.9948
852.0 3408 - 0.9948
853.0 3412 - 0.9948
854.0 3416 - 0.9948
855.0 3420 - 0.9948
856.0 3424 - 0.9948
857.0 3428 - 0.9945
858.0 3432 - 0.9945
859.0 3436 - 0.9945
860.0 3440 - 0.9945
861.0 3444 - 0.9945
862.0 3448 - 0.9948
863.0 3452 - 0.9948
864.0 3456 - 0.9948
865.0 3460 - 0.9948
866.0 3464 - 0.9948
867.0 3468 - 0.9948
868.0 3472 - 0.9948
869.0 3476 - 0.9948
870.0 3480 - 0.9948
871.0 3484 - 0.9948
872.0 3488 - 0.9948
873.0 3492 - 0.9948
874.0 3496 - 0.9948
875.0 3500 2.268 0.9948
876.0 3504 - 0.9948
877.0 3508 - 0.9948
878.0 3512 - 0.9948
879.0 3516 - 0.9948
880.0 3520 - 0.9948
881.0 3524 - 0.9948
882.0 3528 - 0.9948
883.0 3532 - 0.9948
884.0 3536 - 0.9948
885.0 3540 - 0.9948
886.0 3544 - 0.9948
887.0 3548 - 0.9948
888.0 3552 - 0.9948
889.0 3556 - 0.9948
890.0 3560 - 0.9948
891.0 3564 - 0.9948
892.0 3568 - 0.9948
893.0 3572 - 0.9948
894.0 3576 - 0.9948
895.0 3580 - 0.9948
896.0 3584 - 0.9948
897.0 3588 - 0.9948
898.0 3592 - 0.9948
899.0 3596 - 0.9948
900.0 3600 - 0.9948
901.0 3604 - 0.9948
902.0 3608 - 0.9948
903.0 3612 - 0.9948
904.0 3616 - 0.9948
905.0 3620 - 0.9948
906.0 3624 - 0.9948
907.0 3628 - 0.9948
908.0 3632 - 0.9948
909.0 3636 - 0.9948
910.0 3640 - 0.9948
911.0 3644 - 0.9948
912.0 3648 - 0.9948
913.0 3652 - 0.9948
914.0 3656 - 0.9948
915.0 3660 - 0.9948
916.0 3664 - 0.9948
917.0 3668 - 0.9948
918.0 3672 - 0.9948
919.0 3676 - 0.9948
920.0 3680 - 0.9948
921.0 3684 - 0.9948
922.0 3688 - 0.9948
923.0 3692 - 0.9948
924.0 3696 - 0.9948
925.0 3700 - 0.9948
926.0 3704 - 0.9948
927.0 3708 - 0.9948
928.0 3712 - 0.9948
929.0 3716 - 0.9948
930.0 3720 - 0.9948
931.0 3724 - 0.9948
932.0 3728 - 0.9948
933.0 3732 - 0.9948
934.0 3736 - 0.9948
935.0 3740 - 0.9948
936.0 3744 - 0.9948
937.0 3748 - 0.9948
938.0 3752 - 0.9948
939.0 3756 - 0.9948
940.0 3760 - 0.9948
941.0 3764 - 0.9948
942.0 3768 - 0.9948
943.0 3772 - 0.9948
944.0 3776 - 0.9948
945.0 3780 - 0.9948
946.0 3784 - 0.9948
947.0 3788 - 0.9948
948.0 3792 - 0.9948
949.0 3796 - 0.9948
950.0 3800 - 0.9948
951.0 3804 - 0.9948
952.0 3808 - 0.9948
953.0 3812 - 0.9948
954.0 3816 - 0.9948
955.0 3820 - 0.9948
956.0 3824 - 0.9948
957.0 3828 - 0.9948
958.0 3832 - 0.9948
959.0 3836 - 0.9948
960.0 3840 - 0.9948
961.0 3844 - 0.9948
962.0 3848 - 0.9948
963.0 3852 - 0.9948
964.0 3856 - 0.9948
965.0 3860 - 0.9948
966.0 3864 - 0.9948
967.0 3868 - 0.9948
968.0 3872 - 0.9948
969.0 3876 - 0.9948
970.0 3880 - 0.9948
971.0 3884 - 0.9948
972.0 3888 - 0.9948
973.0 3892 - 0.9948
974.0 3896 - 0.9948
975.0 3900 - 0.9948
976.0 3904 - 0.9948
977.0 3908 - 0.9948
978.0 3912 - 0.9948
979.0 3916 - 0.9948
980.0 3920 - 0.9948
981.0 3924 - 0.9948
982.0 3928 - 0.9948
983.0 3932 - 0.9948
984.0 3936 - 0.9948
985.0 3940 - 0.9948
986.0 3944 - 0.9948
987.0 3948 - 0.9948
988.0 3952 - 0.9948
989.0 3956 - 0.9948
990.0 3960 - 0.9948
991.0 3964 - 0.9948
992.0 3968 - 0.9948
993.0 3972 - 0.9948
994.0 3976 - 0.9948
995.0 3980 - 0.9948
996.0 3984 - 0.9948
997.0 3988 - 0.9948
998.0 3992 - 0.9948
999.0 3996 - 0.9948
1000.0 4000 2.265 0.9948
1001.0 4004 - 0.9948
1002.0 4008 - 0.9948
1003.0 4012 - 0.9948
1004.0 4016 - 0.9948
1005.0 4020 - 0.9948
1006.0 4024 - 0.9948
1007.0 4028 - 0.9948
1008.0 4032 - 0.9948
1009.0 4036 - 0.9948
1010.0 4040 - 0.9948
1011.0 4044 - 0.9948
1012.0 4048 - 0.9948
1013.0 4052 - 0.9948
1014.0 4056 - 0.9948
1015.0 4060 - 0.9948
1016.0 4064 - 0.9948
1017.0 4068 - 0.9948
1018.0 4072 - 0.9948
1019.0 4076 - 0.9948
1020.0 4080 - 0.9948
1021.0 4084 - 0.9948
1022.0 4088 - 0.9948
1023.0 4092 - 0.9948
1024.0 4096 - 0.9948
1025.0 4100 - 0.9948
1026.0 4104 - 0.9948
1027.0 4108 - 0.9948
1028.0 4112 - 0.9948
1029.0 4116 - 0.9948
1030.0 4120 - 0.9948
1031.0 4124 - 0.9948
1032.0 4128 - 0.9948
1033.0 4132 - 0.9948
1034.0 4136 - 0.9948
1035.0 4140 - 0.9948
1036.0 4144 - 0.9948
1037.0 4148 - 0.9948
1038.0 4152 - 0.9948
1039.0 4156 - 0.9948
1040.0 4160 - 0.9948
1041.0 4164 - 0.9948
1042.0 4168 - 0.9948
1043.0 4172 - 0.9948
1044.0 4176 - 0.9948
1045.0 4180 - 0.9948
1046.0 4184 - 0.9948
1047.0 4188 - 0.9948
1048.0 4192 - 0.9948
1049.0 4196 - 0.9948
1050.0 4200 - 0.9948
1051.0 4204 - 0.9948
1052.0 4208 - 0.9948
1053.0 4212 - 0.9948
1054.0 4216 - 0.9948
1055.0 4220 - 0.9948
1056.0 4224 - 0.9948
1057.0 4228 - 0.9948
1058.0 4232 - 0.9948
1059.0 4236 - 0.9948
1060.0 4240 - 0.9948
1061.0 4244 - 0.9948
1062.0 4248 - 0.9948
1063.0 4252 - 0.9948
1064.0 4256 - 0.9948
1065.0 4260 - 0.9948
1066.0 4264 - 0.9948
1067.0 4268 - 0.9948
1068.0 4272 - 0.9948
1069.0 4276 - 0.9948
1070.0 4280 - 0.9948
1071.0 4284 - 0.9948
1072.0 4288 - 0.9948
1073.0 4292 - 0.9948
1074.0 4296 - 0.9948
1075.0 4300 - 0.9948
1076.0 4304 - 0.9948
1077.0 4308 - 0.9948
1078.0 4312 - 0.9948
1079.0 4316 - 0.9948
1080.0 4320 - 0.9948
1081.0 4324 - 0.9948
1082.0 4328 - 0.9948
1083.0 4332 - 0.9948
1084.0 4336 - 0.9948
1085.0 4340 - 0.9948
1086.0 4344 - 0.9948
1087.0 4348 - 0.9948
1088.0 4352 - 0.9948
1089.0 4356 - 0.9948
1090.0 4360 - 0.9948
1091.0 4364 - 0.9948
1092.0 4368 - 0.9948
1093.0 4372 - 0.9948
1094.0 4376 - 0.9948
1095.0 4380 - 0.9948
1096.0 4384 - 0.9948
1097.0 4388 - 0.9948
1098.0 4392 - 0.9948
1099.0 4396 - 0.9948
1100.0 4400 - 0.9948
1101.0 4404 - 0.9948
1102.0 4408 - 0.9948
1103.0 4412 - 0.9948
1104.0 4416 - 0.9948
1105.0 4420 - 0.9948
1106.0 4424 - 0.9948
1107.0 4428 - 0.9948
1108.0 4432 - 0.9948
1109.0 4436 - 0.9948
1110.0 4440 - 0.9948
1111.0 4444 - 0.9948
1112.0 4448 - 0.9948
1113.0 4452 - 0.9948
1114.0 4456 - 0.9948
1115.0 4460 - 0.9948
1116.0 4464 - 0.9948
1117.0 4468 - 0.9948
1118.0 4472 - 0.9948
1119.0 4476 - 0.9948
1120.0 4480 - 0.9948
1121.0 4484 - 0.9948
1122.0 4488 - 0.9948
1123.0 4492 - 0.9948
1124.0 4496 - 0.9948
1125.0 4500 2.2654 0.9948
1126.0 4504 - 0.9948
1127.0 4508 - 0.9948
1128.0 4512 - 0.9948
1129.0 4516 - 0.9948
1130.0 4520 - 0.9948
1131.0 4524 - 0.9948
1132.0 4528 - 0.9948
1133.0 4532 - 0.9948
1134.0 4536 - 0.9948
1135.0 4540 - 0.9948
1136.0 4544 - 0.9948
1137.0 4548 - 0.9948
1138.0 4552 - 0.9948
1139.0 4556 - 0.9948
1140.0 4560 - 0.9948
1141.0 4564 - 0.9948
1142.0 4568 - 0.9948
1143.0 4572 - 0.9948
1144.0 4576 - 0.9948
1145.0 4580 - 0.9948
1146.0 4584 - 0.9948
1147.0 4588 - 0.9948
1148.0 4592 - 0.9948
1149.0 4596 - 0.9948
1150.0 4600 - 0.9948
1151.0 4604 - 0.9948
1152.0 4608 - 0.9948
1153.0 4612 - 0.9948
1154.0 4616 - 0.9948
1155.0 4620 - 0.9948
1156.0 4624 - 0.9948
1157.0 4628 - 0.9948
1158.0 4632 - 0.9948
1159.0 4636 - 0.9948
1160.0 4640 - 0.9948
1161.0 4644 - 0.9948
1162.0 4648 - 0.9948
1163.0 4652 - 0.9948
1164.0 4656 - 0.9948
1165.0 4660 - 0.9948
1166.0 4664 - 0.9948
1167.0 4668 - 0.9948
1168.0 4672 - 0.9948
1169.0 4676 - 0.9948
1170.0 4680 - 0.9948
1171.0 4684 - 0.9948
1172.0 4688 - 0.9948
1173.0 4692 - 0.9948
1174.0 4696 - 0.9948
1175.0 4700 - 0.9948
1176.0 4704 - 0.9948
1177.0 4708 - 0.9948
1178.0 4712 - 0.9948
1179.0 4716 - 0.9948
1180.0 4720 - 0.9948
1181.0 4724 - 0.9948
1182.0 4728 - 0.9948
1183.0 4732 - 0.9948
1184.0 4736 - 0.9948
1185.0 4740 - 0.9948
1186.0 4744 - 0.9948
1187.0 4748 - 0.9948
1188.0 4752 - 0.9948
1189.0 4756 - 0.9948
1190.0 4760 - 0.9948
1191.0 4764 - 0.9948
1192.0 4768 - 0.9948
1193.0 4772 - 0.9948
1194.0 4776 - 0.9948
1195.0 4780 - 0.9948
1196.0 4784 - 0.9948
1197.0 4788 - 0.9948
1198.0 4792 - 0.9948
1199.0 4796 - 0.9948
1200.0 4800 - 0.9948

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.44.0
  • PyTorch: 2.4.0
  • Accelerate: 0.34.2
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
8
Safetensors
Model size
29.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for WpythonW/RUbert-tiny_custom_test_2

Finetuned
(37)
this model

Evaluation results