Wazzzabeee's picture
End of training
2f75241
metadata
license: apache-2.0
base_model: google/flan-t5-small
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: flan-t5-small-samsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: test
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 42.6222

flan-t5-small-samsum

This model is a fine-tuned version of google/flan-t5-small on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6729
  • Rouge1: 42.6222
  • Rouge2: 18.682
  • Rougel: 35.3954
  • Rougelsum: 38.9104
  • Gen Len: 16.9170

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.8863 0.22 100 1.7049 42.1145 18.0254 34.733 38.4052 16.5788
1.8463 0.43 200 1.6947 42.4119 18.2925 34.9702 38.8535 17.3614
1.8548 0.65 300 1.6792 42.5967 18.5244 35.1965 38.9087 17.1514
1.8358 0.87 400 1.6772 42.167 18.2032 34.8647 38.4144 16.5873
1.8129 1.08 500 1.6729 42.6222 18.682 35.3954 38.9104 16.9170
1.8068 1.3 600 1.6709 42.5238 18.311 35.1257 38.6584 16.9451
1.7973 1.52 700 1.6687 42.8715 18.6133 35.3054 38.971 16.7546
1.7979 1.74 800 1.6668 42.9038 18.7483 35.4156 39.1118 16.8791
1.7899 1.95 900 1.6670 43.1142 18.7369 35.4796 39.2724 16.9109

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0