File size: 2,714 Bytes
2f75241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: flan-t5-small-samsum
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: samsum
      type: samsum
      config: samsum
      split: test
      args: samsum
    metrics:
    - name: Rouge1
      type: rouge
      value: 42.6222
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-small-samsum

This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6729
- Rouge1: 42.6222
- Rouge2: 18.682
- Rougel: 35.3954
- Rougelsum: 38.9104
- Gen Len: 16.9170

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.8863        | 0.22  | 100  | 1.7049          | 42.1145 | 18.0254 | 34.733  | 38.4052   | 16.5788 |
| 1.8463        | 0.43  | 200  | 1.6947          | 42.4119 | 18.2925 | 34.9702 | 38.8535   | 17.3614 |
| 1.8548        | 0.65  | 300  | 1.6792          | 42.5967 | 18.5244 | 35.1965 | 38.9087   | 17.1514 |
| 1.8358        | 0.87  | 400  | 1.6772          | 42.167  | 18.2032 | 34.8647 | 38.4144   | 16.5873 |
| 1.8129        | 1.08  | 500  | 1.6729          | 42.6222 | 18.682  | 35.3954 | 38.9104   | 16.9170 |
| 1.8068        | 1.3   | 600  | 1.6709          | 42.5238 | 18.311  | 35.1257 | 38.6584   | 16.9451 |
| 1.7973        | 1.52  | 700  | 1.6687          | 42.8715 | 18.6133 | 35.3054 | 38.971    | 16.7546 |
| 1.7979        | 1.74  | 800  | 1.6668          | 42.9038 | 18.7483 | 35.4156 | 39.1118   | 16.8791 |
| 1.7899        | 1.95  | 900  | 1.6670          | 43.1142 | 18.7369 | 35.4796 | 39.2724   | 16.9109 |


### Framework versions

- Transformers 4.36.0
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0