|
--- |
|
base_model: allenai/longformer-base-4096 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- essays_su_g |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: longformer-spans |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: essays_su_g |
|
type: essays_su_g |
|
config: spans |
|
split: train[80%:100%] |
|
args: spans |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9382671349433361 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# longformer-spans |
|
|
|
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1775 |
|
- B: {'precision': 0.8277385159010601, 'recall': 0.8983700862895494, 'f1-score': 0.8616091954022989, 'support': 1043.0} |
|
- I: {'precision': 0.9442383361439011, 'recall': 0.9681844380403458, 'f1-score': 0.9560614684120662, 'support': 17350.0} |
|
- O: {'precision': 0.9404392319190525, 'recall': 0.886516366789508, 'f1-score': 0.9126820286782348, 'support': 9226.0} |
|
- Accuracy: 0.9383 |
|
- Macro avg: {'precision': 0.9041386946546712, 'recall': 0.9176902970398011, 'f1-score': 0.9101175641641999, 'support': 27619.0} |
|
- Weighted avg: {'precision': 0.9385697801465175, 'recall': 0.9382671349433361, 'f1-score': 0.9380038837155341, 'support': 27619.0} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:| |
|
| No log | 1.0 | 41 | 0.2767 | {'precision': 0.8252032520325203, 'recall': 0.38926174496644295, 'f1-score': 0.5289902280130293, 'support': 1043.0} | {'precision': 0.8942471288813271, 'recall': 0.9693948126801153, 'f1-score': 0.9303058797499861, 'support': 17350.0} | {'precision': 0.9191008534679649, 'recall': 0.8287448515066117, 'f1-score': 0.8715873468224564, 'support': 9226.0} | 0.9005 | {'precision': 0.8795170781272708, 'recall': 0.7291338030510567, 'f1-score': 0.7769611515284907, 'support': 27619.0} | {'precision': 0.8999420381641764, 'recall': 0.9005032767297875, 'f1-score': 0.8955359963526497, 'support': 27619.0} | |
|
| No log | 2.0 | 82 | 0.2284 | {'precision': 0.7671568627450981, 'recall': 0.900287631831256, 'f1-score': 0.8284075871195412, 'support': 1043.0} | {'precision': 0.9168915272531031, 'recall': 0.9792507204610951, 'f1-score': 0.947045707915273, 'support': 17350.0} | {'precision': 0.9646535282898919, 'recall': 0.8223498807717321, 'f1-score': 0.8878357030015798, 'support': 9226.0} | 0.9239 | {'precision': 0.8829006394293644, 'recall': 0.900629411021361, 'f1-score': 0.8877629993454645, 'support': 27619.0} | {'precision': 0.9271916455225395, 'recall': 0.9238567652702849, 'f1-score': 0.9227866447586169, 'support': 27619.0} | |
|
| No log | 3.0 | 123 | 0.1770 | {'precision': 0.8351648351648352, 'recall': 0.8744007670182167, 'f1-score': 0.8543325526932084, 'support': 1043.0} | {'precision': 0.9442345644206371, 'recall': 0.9651873198847263, 'f1-score': 0.954595981188542, 'support': 17350.0} | {'precision': 0.9328935395814377, 'recall': 0.8890093214827661, 'f1-score': 0.9104229104229105, 'support': 9226.0} | 0.9363 | {'precision': 0.90409764638897, 'recall': 0.909532469461903, 'f1-score': 0.906450481434887, 'support': 27619.0} | {'precision': 0.9363272534108158, 'recall': 0.9363119591585503, 'f1-score': 0.9360538360419275, 'support': 27619.0} | |
|
| No log | 4.0 | 164 | 0.1804 | {'precision': 0.8234265734265734, 'recall': 0.9031639501438159, 'f1-score': 0.8614540466392319, 'support': 1043.0} | {'precision': 0.9435452033162258, 'recall': 0.9642651296829972, 'f1-score': 0.9537926512927226, 'support': 17350.0} | {'precision': 0.9335544373284538, 'recall': 0.8847821374376761, 'f1-score': 0.9085141903171953, 'support': 9226.0} | 0.9354 | {'precision': 0.9001754046904177, 'recall': 0.917403739088163, 'f1-score': 0.9079202960830499, 'support': 27619.0} | {'precision': 0.9356716909523425, 'recall': 0.9354067851841124, 'f1-score': 0.9351805275513196, 'support': 27619.0} | |
|
| No log | 5.0 | 205 | 0.1774 | {'precision': 0.8283450704225352, 'recall': 0.9022051773729626, 'f1-score': 0.8636989444699403, 'support': 1043.0} | {'precision': 0.9497974784642592, 'recall': 0.9595965417867435, 'f1-score': 0.9546718655924767, 'support': 17350.0} | {'precision': 0.9269600178691088, 'recall': 0.8996314762627358, 'f1-score': 0.9130913091309132, 'support': 9226.0} | 0.9374 | {'precision': 0.9017008555853011, 'recall': 0.9204777318074807, 'f1-score': 0.9104873730644435, 'support': 27619.0} | {'precision': 0.9375822182072485, 'recall': 0.9373981679278758, 'f1-score': 0.9373465833358712, 'support': 27619.0} | |
|
| No log | 6.0 | 246 | 0.1775 | {'precision': 0.8277385159010601, 'recall': 0.8983700862895494, 'f1-score': 0.8616091954022989, 'support': 1043.0} | {'precision': 0.9442383361439011, 'recall': 0.9681844380403458, 'f1-score': 0.9560614684120662, 'support': 17350.0} | {'precision': 0.9404392319190525, 'recall': 0.886516366789508, 'f1-score': 0.9126820286782348, 'support': 9226.0} | 0.9383 | {'precision': 0.9041386946546712, 'recall': 0.9176902970398011, 'f1-score': 0.9101175641641999, 'support': 27619.0} | {'precision': 0.9385697801465175, 'recall': 0.9382671349433361, 'f1-score': 0.9380038837155341, 'support': 27619.0} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|