File size: 7,327 Bytes
49f6018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49c7a0d
49f6018
 
 
 
49c7a0d
49f6018
 
 
 
 
 
 
 
 
49c7a0d
 
 
 
 
 
 
49f6018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49c7a0d
 
 
 
 
 
 
 
49f6018
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
base_model: allenai/longformer-base-4096
tags:
- generated_from_trainer
datasets:
- essays_su_g
metrics:
- accuracy
model-index:
- name: longformer-spans
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: essays_su_g
      type: essays_su_g
      config: spans
      split: train[80%:100%]
      args: spans
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9382671349433361
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# longformer-spans

This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1775
- B: {'precision': 0.8277385159010601, 'recall': 0.8983700862895494, 'f1-score': 0.8616091954022989, 'support': 1043.0}
- I: {'precision': 0.9442383361439011, 'recall': 0.9681844380403458, 'f1-score': 0.9560614684120662, 'support': 17350.0}
- O: {'precision': 0.9404392319190525, 'recall': 0.886516366789508, 'f1-score': 0.9126820286782348, 'support': 9226.0}
- Accuracy: 0.9383
- Macro avg: {'precision': 0.9041386946546712, 'recall': 0.9176902970398011, 'f1-score': 0.9101175641641999, 'support': 27619.0}
- Weighted avg: {'precision': 0.9385697801465175, 'recall': 0.9382671349433361, 'f1-score': 0.9380038837155341, 'support': 27619.0}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step | Validation Loss | B                                                                                                                   | I                                                                                                                   | O                                                                                                                  | Accuracy | Macro avg                                                                                                           | Weighted avg                                                                                                        |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
| No log        | 1.0   | 41   | 0.2767          | {'precision': 0.8252032520325203, 'recall': 0.38926174496644295, 'f1-score': 0.5289902280130293, 'support': 1043.0} | {'precision': 0.8942471288813271, 'recall': 0.9693948126801153, 'f1-score': 0.9303058797499861, 'support': 17350.0} | {'precision': 0.9191008534679649, 'recall': 0.8287448515066117, 'f1-score': 0.8715873468224564, 'support': 9226.0} | 0.9005   | {'precision': 0.8795170781272708, 'recall': 0.7291338030510567, 'f1-score': 0.7769611515284907, 'support': 27619.0} | {'precision': 0.8999420381641764, 'recall': 0.9005032767297875, 'f1-score': 0.8955359963526497, 'support': 27619.0} |
| No log        | 2.0   | 82   | 0.2284          | {'precision': 0.7671568627450981, 'recall': 0.900287631831256, 'f1-score': 0.8284075871195412, 'support': 1043.0}   | {'precision': 0.9168915272531031, 'recall': 0.9792507204610951, 'f1-score': 0.947045707915273, 'support': 17350.0}  | {'precision': 0.9646535282898919, 'recall': 0.8223498807717321, 'f1-score': 0.8878357030015798, 'support': 9226.0} | 0.9239   | {'precision': 0.8829006394293644, 'recall': 0.900629411021361, 'f1-score': 0.8877629993454645, 'support': 27619.0}  | {'precision': 0.9271916455225395, 'recall': 0.9238567652702849, 'f1-score': 0.9227866447586169, 'support': 27619.0} |
| No log        | 3.0   | 123  | 0.1770          | {'precision': 0.8351648351648352, 'recall': 0.8744007670182167, 'f1-score': 0.8543325526932084, 'support': 1043.0}  | {'precision': 0.9442345644206371, 'recall': 0.9651873198847263, 'f1-score': 0.954595981188542, 'support': 17350.0}  | {'precision': 0.9328935395814377, 'recall': 0.8890093214827661, 'f1-score': 0.9104229104229105, 'support': 9226.0} | 0.9363   | {'precision': 0.90409764638897, 'recall': 0.909532469461903, 'f1-score': 0.906450481434887, 'support': 27619.0}     | {'precision': 0.9363272534108158, 'recall': 0.9363119591585503, 'f1-score': 0.9360538360419275, 'support': 27619.0} |
| No log        | 4.0   | 164  | 0.1804          | {'precision': 0.8234265734265734, 'recall': 0.9031639501438159, 'f1-score': 0.8614540466392319, 'support': 1043.0}  | {'precision': 0.9435452033162258, 'recall': 0.9642651296829972, 'f1-score': 0.9537926512927226, 'support': 17350.0} | {'precision': 0.9335544373284538, 'recall': 0.8847821374376761, 'f1-score': 0.9085141903171953, 'support': 9226.0} | 0.9354   | {'precision': 0.9001754046904177, 'recall': 0.917403739088163, 'f1-score': 0.9079202960830499, 'support': 27619.0}  | {'precision': 0.9356716909523425, 'recall': 0.9354067851841124, 'f1-score': 0.9351805275513196, 'support': 27619.0} |
| No log        | 5.0   | 205  | 0.1774          | {'precision': 0.8283450704225352, 'recall': 0.9022051773729626, 'f1-score': 0.8636989444699403, 'support': 1043.0}  | {'precision': 0.9497974784642592, 'recall': 0.9595965417867435, 'f1-score': 0.9546718655924767, 'support': 17350.0} | {'precision': 0.9269600178691088, 'recall': 0.8996314762627358, 'f1-score': 0.9130913091309132, 'support': 9226.0} | 0.9374   | {'precision': 0.9017008555853011, 'recall': 0.9204777318074807, 'f1-score': 0.9104873730644435, 'support': 27619.0} | {'precision': 0.9375822182072485, 'recall': 0.9373981679278758, 'f1-score': 0.9373465833358712, 'support': 27619.0} |
| No log        | 6.0   | 246  | 0.1775          | {'precision': 0.8277385159010601, 'recall': 0.8983700862895494, 'f1-score': 0.8616091954022989, 'support': 1043.0}  | {'precision': 0.9442383361439011, 'recall': 0.9681844380403458, 'f1-score': 0.9560614684120662, 'support': 17350.0} | {'precision': 0.9404392319190525, 'recall': 0.886516366789508, 'f1-score': 0.9126820286782348, 'support': 9226.0}  | 0.9383   | {'precision': 0.9041386946546712, 'recall': 0.9176902970398011, 'f1-score': 0.9101175641641999, 'support': 27619.0} | {'precision': 0.9385697801465175, 'recall': 0.9382671349433361, 'f1-score': 0.9380038837155341, 'support': 27619.0} |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2