Theoreticallyhugo
commited on
Commit
•
49f6018
1
Parent(s):
a900867
trainer: training complete at 2024-02-19 20:26:04.126221.
Browse files- README.md +14 -13
- meta_data/README_s42_e6.md +85 -0
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,12 +33,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
- Loss: 0.1716
|
36 |
-
- B: {'precision': 0.
|
37 |
-
- I: {'precision': 0.
|
38 |
-
- O: {'precision': 0.
|
39 |
-
- Accuracy: 0.
|
40 |
-
- Macro avg: {'precision': 0.
|
41 |
-
- Weighted avg: {'precision': 0.
|
42 |
|
43 |
## Model description
|
44 |
|
@@ -63,17 +63,18 @@ The following hyperparameters were used during training:
|
|
63 |
- seed: 42
|
64 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
- lr_scheduler_type: linear
|
66 |
-
- num_epochs:
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
72 |
-
| No log | 1.0 | 41 | 0.
|
73 |
-
| No log | 2.0 | 82 | 0.
|
74 |
-
| No log | 3.0 | 123 | 0.
|
75 |
-
| No log | 4.0 | 164 | 0.
|
76 |
-
| No log | 5.0 | 205 | 0.
|
|
|
77 |
|
78 |
|
79 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9421333619979219
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
- Loss: 0.1716
|
36 |
+
- B: {'precision': 0.8420123565754634, 'recall': 0.9008498583569405, 'f1-score': 0.8704379562043796, 'support': 1059.0}
|
37 |
+
- I: {'precision': 0.9520763187429854, 'recall': 0.965348506401138, 'f1-score': 0.9586664783161464, 'support': 17575.0}
|
38 |
+
- O: {'precision': 0.9350156319785619, 'recall': 0.9028571428571428, 'f1-score': 0.9186550381218803, 'support': 9275.0}
|
39 |
+
- Accuracy: 0.9421
|
40 |
+
- Macro avg: {'precision': 0.9097014357656702, 'recall': 0.9230185025384072, 'f1-score': 0.9159198242141354, 'support': 27909.0}
|
41 |
+
- Weighted avg: {'precision': 0.9422301900506126, 'recall': 0.9421333619979219, 'f1-score': 0.9420216643594235, 'support': 27909.0}
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
63 |
- seed: 42
|
64 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
- lr_scheduler_type: linear
|
66 |
+
- num_epochs: 6
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
72 |
+
| No log | 1.0 | 41 | 0.2779 | {'precision': 0.8035190615835777, 'recall': 0.5174693106704438, 'f1-score': 0.6295232624928202, 'support': 1059.0} | {'precision': 0.9134303762702555, 'recall': 0.9461735419630156, 'f1-score': 0.9295136948015652, 'support': 17575.0} | {'precision': 0.8836178230990911, 'recall': 0.8595148247978437, 'f1-score': 0.8713996830081434, 'support': 9275.0} | 0.9011 | {'precision': 0.8668557536509748, 'recall': 0.7743858924771011, 'f1-score': 0.8101455467675095, 'support': 27909.0} | {'precision': 0.8993522110577526, 'recall': 0.9011071697301946, 'f1-score': 0.8988175993771879, 'support': 27909.0} |
|
73 |
+
| No log | 2.0 | 82 | 0.1973 | {'precision': 0.8130590339892666, 'recall': 0.8583569405099151, 'f1-score': 0.8350941662838769, 'support': 1059.0} | {'precision': 0.9326064325242452, 'recall': 0.9684779516358464, 'f1-score': 0.9502037626304918, 'support': 17575.0} | {'precision': 0.9385245901639344, 'recall': 0.8641509433962264, 'f1-score': 0.899803536345776, 'support': 9275.0} | 0.9296 | {'precision': 0.8947300188924822, 'recall': 0.896995278513996, 'f1-score': 0.8950338217533815, 'support': 27909.0} | {'precision': 0.9300370182514147, 'recall': 0.9296284352717761, 'f1-score': 0.9290864470218421, 'support': 27909.0} |
|
74 |
+
| No log | 3.0 | 123 | 0.1836 | {'precision': 0.788197251414713, 'recall': 0.9206798866855525, 'f1-score': 0.8493031358885017, 'support': 1059.0} | {'precision': 0.938334252619967, 'recall': 0.9679658605974395, 'f1-score': 0.9529197591373757, 'support': 17575.0} | {'precision': 0.943807070943573, 'recall': 0.8692183288409704, 'f1-score': 0.904978391423921, 'support': 9275.0} | 0.9334 | {'precision': 0.8901128583260842, 'recall': 0.9192880253746541, 'f1-score': 0.9024004288165995, 'support': 27909.0} | {'precision': 0.9344561239043228, 'recall': 0.9333548317746964, 'f1-score': 0.9330556941560847, 'support': 27909.0} |
|
75 |
+
| No log | 4.0 | 164 | 0.1709 | {'precision': 0.8227739726027398, 'recall': 0.9074598677998111, 'f1-score': 0.8630444544229906, 'support': 1059.0} | {'precision': 0.9512620158524931, 'recall': 0.9628449502133712, 'f1-score': 0.9570184368284129, 'support': 17575.0} | {'precision': 0.9324173369079535, 'recall': 0.8999460916442048, 'f1-score': 0.9158940034015471, 'support': 9275.0} | 0.9398 | {'precision': 0.9021511084543955, 'recall': 0.9234169698857958, 'f1-score': 0.9119856315509836, 'support': 27909.0} | {'precision': 0.9401239157768152, 'recall': 0.9398401949192017, 'f1-score': 0.9397857317009801, 'support': 27909.0} |
|
76 |
+
| No log | 5.0 | 205 | 0.1695 | {'precision': 0.8363954505686789, 'recall': 0.902738432483475, 'f1-score': 0.8683015440508628, 'support': 1059.0} | {'precision': 0.9477175185329691, 'recall': 0.9674537695590327, 'f1-score': 0.9574839508953711, 'support': 17575.0} | {'precision': 0.9385835694050991, 'recall': 0.8930458221024259, 'f1-score': 0.9152486187845303, 'support': 9275.0} | 0.9403 | {'precision': 0.9075655128355824, 'recall': 0.9210793413816445, 'f1-score': 0.9136780379102548, 'support': 27909.0} | {'precision': 0.9404579446272334, 'recall': 0.9402701637464617, 'f1-score': 0.9400638758594909, 'support': 27909.0} |
|
77 |
+
| No log | 6.0 | 246 | 0.1716 | {'precision': 0.8420123565754634, 'recall': 0.9008498583569405, 'f1-score': 0.8704379562043796, 'support': 1059.0} | {'precision': 0.9520763187429854, 'recall': 0.965348506401138, 'f1-score': 0.9586664783161464, 'support': 17575.0} | {'precision': 0.9350156319785619, 'recall': 0.9028571428571428, 'f1-score': 0.9186550381218803, 'support': 9275.0} | 0.9421 | {'precision': 0.9097014357656702, 'recall': 0.9230185025384072, 'f1-score': 0.9159198242141354, 'support': 27909.0} | {'precision': 0.9422301900506126, 'recall': 0.9421333619979219, 'f1-score': 0.9420216643594235, 'support': 27909.0} |
|
78 |
|
79 |
|
80 |
### Framework versions
|
meta_data/README_s42_e6.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: allenai/longformer-base-4096
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- essays_su_g
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: longformer-spans
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Token Classification
|
15 |
+
type: token-classification
|
16 |
+
dataset:
|
17 |
+
name: essays_su_g
|
18 |
+
type: essays_su_g
|
19 |
+
config: spans
|
20 |
+
split: test
|
21 |
+
args: spans
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.9421333619979219
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# longformer-spans
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.1716
|
36 |
+
- B: {'precision': 0.8420123565754634, 'recall': 0.9008498583569405, 'f1-score': 0.8704379562043796, 'support': 1059.0}
|
37 |
+
- I: {'precision': 0.9520763187429854, 'recall': 0.965348506401138, 'f1-score': 0.9586664783161464, 'support': 17575.0}
|
38 |
+
- O: {'precision': 0.9350156319785619, 'recall': 0.9028571428571428, 'f1-score': 0.9186550381218803, 'support': 9275.0}
|
39 |
+
- Accuracy: 0.9421
|
40 |
+
- Macro avg: {'precision': 0.9097014357656702, 'recall': 0.9230185025384072, 'f1-score': 0.9159198242141354, 'support': 27909.0}
|
41 |
+
- Weighted avg: {'precision': 0.9422301900506126, 'recall': 0.9421333619979219, 'f1-score': 0.9420216643594235, 'support': 27909.0}
|
42 |
+
|
43 |
+
## Model description
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Intended uses & limitations
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training and evaluation data
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Training procedure
|
56 |
+
|
57 |
+
### Training hyperparameters
|
58 |
+
|
59 |
+
The following hyperparameters were used during training:
|
60 |
+
- learning_rate: 2e-05
|
61 |
+
- train_batch_size: 8
|
62 |
+
- eval_batch_size: 8
|
63 |
+
- seed: 42
|
64 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
+
- lr_scheduler_type: linear
|
66 |
+
- num_epochs: 6
|
67 |
+
|
68 |
+
### Training results
|
69 |
+
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
|
72 |
+
| No log | 1.0 | 41 | 0.2779 | {'precision': 0.8035190615835777, 'recall': 0.5174693106704438, 'f1-score': 0.6295232624928202, 'support': 1059.0} | {'precision': 0.9134303762702555, 'recall': 0.9461735419630156, 'f1-score': 0.9295136948015652, 'support': 17575.0} | {'precision': 0.8836178230990911, 'recall': 0.8595148247978437, 'f1-score': 0.8713996830081434, 'support': 9275.0} | 0.9011 | {'precision': 0.8668557536509748, 'recall': 0.7743858924771011, 'f1-score': 0.8101455467675095, 'support': 27909.0} | {'precision': 0.8993522110577526, 'recall': 0.9011071697301946, 'f1-score': 0.8988175993771879, 'support': 27909.0} |
|
73 |
+
| No log | 2.0 | 82 | 0.1973 | {'precision': 0.8130590339892666, 'recall': 0.8583569405099151, 'f1-score': 0.8350941662838769, 'support': 1059.0} | {'precision': 0.9326064325242452, 'recall': 0.9684779516358464, 'f1-score': 0.9502037626304918, 'support': 17575.0} | {'precision': 0.9385245901639344, 'recall': 0.8641509433962264, 'f1-score': 0.899803536345776, 'support': 9275.0} | 0.9296 | {'precision': 0.8947300188924822, 'recall': 0.896995278513996, 'f1-score': 0.8950338217533815, 'support': 27909.0} | {'precision': 0.9300370182514147, 'recall': 0.9296284352717761, 'f1-score': 0.9290864470218421, 'support': 27909.0} |
|
74 |
+
| No log | 3.0 | 123 | 0.1836 | {'precision': 0.788197251414713, 'recall': 0.9206798866855525, 'f1-score': 0.8493031358885017, 'support': 1059.0} | {'precision': 0.938334252619967, 'recall': 0.9679658605974395, 'f1-score': 0.9529197591373757, 'support': 17575.0} | {'precision': 0.943807070943573, 'recall': 0.8692183288409704, 'f1-score': 0.904978391423921, 'support': 9275.0} | 0.9334 | {'precision': 0.8901128583260842, 'recall': 0.9192880253746541, 'f1-score': 0.9024004288165995, 'support': 27909.0} | {'precision': 0.9344561239043228, 'recall': 0.9333548317746964, 'f1-score': 0.9330556941560847, 'support': 27909.0} |
|
75 |
+
| No log | 4.0 | 164 | 0.1709 | {'precision': 0.8227739726027398, 'recall': 0.9074598677998111, 'f1-score': 0.8630444544229906, 'support': 1059.0} | {'precision': 0.9512620158524931, 'recall': 0.9628449502133712, 'f1-score': 0.9570184368284129, 'support': 17575.0} | {'precision': 0.9324173369079535, 'recall': 0.8999460916442048, 'f1-score': 0.9158940034015471, 'support': 9275.0} | 0.9398 | {'precision': 0.9021511084543955, 'recall': 0.9234169698857958, 'f1-score': 0.9119856315509836, 'support': 27909.0} | {'precision': 0.9401239157768152, 'recall': 0.9398401949192017, 'f1-score': 0.9397857317009801, 'support': 27909.0} |
|
76 |
+
| No log | 5.0 | 205 | 0.1695 | {'precision': 0.8363954505686789, 'recall': 0.902738432483475, 'f1-score': 0.8683015440508628, 'support': 1059.0} | {'precision': 0.9477175185329691, 'recall': 0.9674537695590327, 'f1-score': 0.9574839508953711, 'support': 17575.0} | {'precision': 0.9385835694050991, 'recall': 0.8930458221024259, 'f1-score': 0.9152486187845303, 'support': 9275.0} | 0.9403 | {'precision': 0.9075655128355824, 'recall': 0.9210793413816445, 'f1-score': 0.9136780379102548, 'support': 27909.0} | {'precision': 0.9404579446272334, 'recall': 0.9402701637464617, 'f1-score': 0.9400638758594909, 'support': 27909.0} |
|
77 |
+
| No log | 6.0 | 246 | 0.1716 | {'precision': 0.8420123565754634, 'recall': 0.9008498583569405, 'f1-score': 0.8704379562043796, 'support': 1059.0} | {'precision': 0.9520763187429854, 'recall': 0.965348506401138, 'f1-score': 0.9586664783161464, 'support': 17575.0} | {'precision': 0.9350156319785619, 'recall': 0.9028571428571428, 'f1-score': 0.9186550381218803, 'support': 9275.0} | 0.9421 | {'precision': 0.9097014357656702, 'recall': 0.9230185025384072, 'f1-score': 0.9159198242141354, 'support': 27909.0} | {'precision': 0.9422301900506126, 'recall': 0.9421333619979219, 'f1-score': 0.9420216643594235, 'support': 27909.0} |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.37.2
|
83 |
+
- Pytorch 2.2.0+cu121
|
84 |
+
- Datasets 2.17.0
|
85 |
+
- Tokenizers 0.15.2
|