longformer-spans / README.md
Theoreticallyhugo's picture
trainer: training complete at 2024-02-19 20:05:57.117400.
6b67e01 verified
|
raw
history blame
6.68 kB
metadata
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
  - generated_from_trainer
datasets:
  - essays_su_g
metrics:
  - accuracy
model-index:
  - name: longformer-spans
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: essays_su_g
          type: essays_su_g
          config: spans
          split: test
          args: spans
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9400193485972267

longformer-spans

This model is a fine-tuned version of allenai/longformer-base-4096 on the essays_su_g dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1716
  • B: {'precision': 0.8278829604130808, 'recall': 0.9084041548630784, 'f1-score': 0.8662764520486267, 'support': 1059.0}
  • I: {'precision': 0.949054915557544, 'recall': 0.9656330014224751, 'f1-score': 0.9572721888484643, 'support': 17575.0}
  • O: {'precision': 0.9364918217710095, 'recall': 0.8950943396226415, 'f1-score': 0.9153252480705623, 'support': 9275.0}
  • Accuracy: 0.9400
  • Macro avg: {'precision': 0.9044765659138781, 'recall': 0.9230438319693982, 'f1-score': 0.9129579629892177, 'support': 27909.0}
  • Weighted avg: {'precision': 0.9402819822611845, 'recall': 0.9400193485972267, 'f1-score': 0.9398791485752167, 'support': 27909.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss B I O Accuracy Macro avg Weighted avg
No log 1.0 41 0.2820 {'precision': 0.8252595155709342, 'recall': 0.45042492917847027, 'f1-score': 0.582773365913256, 'support': 1059.0} {'precision': 0.9113681210260908, 'recall': 0.9460597439544808, 'f1-score': 0.9283899606354169, 'support': 17575.0} {'precision': 0.879608231539562, 'recall': 0.8617789757412398, 'f1-score': 0.8706023309007732, 'support': 9275.0} 0.8992 {'precision': 0.8720786227121957, 'recall': 0.7527545496247302, 'f1-score': 0.793921885816482, 'support': 27909.0} {'precision': 0.8975459852217064, 'recall': 0.8992439714787345, 'f1-score': 0.896071058503503, 'support': 27909.0}
No log 2.0 82 0.1953 {'precision': 0.812897366030881, 'recall': 0.8451369216241738, 'f1-score': 0.8287037037037038, 'support': 1059.0} {'precision': 0.9452124358178637, 'recall': 0.9531721194879089, 'f1-score': 0.9491755906850247, 'support': 17575.0} {'precision': 0.9121629058888278, 'recall': 0.8934770889487871, 'f1-score': 0.902723311546841, 'support': 9275.0} 0.9292 {'precision': 0.8900909025791909, 'recall': 0.8972620433536234, 'f1-score': 0.8935342019785232, 'support': 27909.0} {'precision': 0.9292084210199053, 'recall': 0.9292342971801211, 'f1-score': 0.9291668258665118, 'support': 27909.0}
No log 3.0 123 0.1858 {'precision': 0.7883211678832117, 'recall': 0.9178470254957507, 'f1-score': 0.8481675392670156, 'support': 1059.0} {'precision': 0.9373831775700935, 'recall': 0.9701849217638692, 'f1-score': 0.9535020271214875, 'support': 17575.0} {'precision': 0.9481498939429649, 'recall': 0.8674932614555256, 'f1-score': 0.9060300658746692, 'support': 9275.0} 0.9341 {'precision': 0.8912847464654234, 'recall': 0.9185084029050485, 'f1-score': 0.9025665440877241, 'support': 27909.0} {'precision': 0.9353051606615684, 'recall': 0.9340714464867964, 'f1-score': 0.9337287760841115, 'support': 27909.0}
No log 4.0 164 0.1704 {'precision': 0.8296943231441049, 'recall': 0.8970727101038716, 'f1-score': 0.8620689655172413, 'support': 1059.0} {'precision': 0.9604448520981427, 'recall': 0.9532859174964438, 'f1-score': 0.9568519946314857, 'support': 17575.0} {'precision': 0.9158798283261803, 'recall': 0.9203234501347709, 'f1-score': 0.9180962624361388, 'support': 9275.0} 0.9402 {'precision': 0.9020063345228092, 'recall': 0.923560692578362, 'f1-score': 0.9123390741949553, 'support': 27909.0} {'precision': 0.9406732585029842, 'recall': 0.9401985022752517, 'f1-score': 0.9403757810823142, 'support': 27909.0}
No log 5.0 205 0.1716 {'precision': 0.8278829604130808, 'recall': 0.9084041548630784, 'f1-score': 0.8662764520486267, 'support': 1059.0} {'precision': 0.949054915557544, 'recall': 0.9656330014224751, 'f1-score': 0.9572721888484643, 'support': 17575.0} {'precision': 0.9364918217710095, 'recall': 0.8950943396226415, 'f1-score': 0.9153252480705623, 'support': 9275.0} 0.9400 {'precision': 0.9044765659138781, 'recall': 0.9230438319693982, 'f1-score': 0.9129579629892177, 'support': 27909.0} {'precision': 0.9402819822611845, 'recall': 0.9400193485972267, 'f1-score': 0.9398791485752167, 'support': 27909.0}

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2