Theoreticallyhugo commited on
Commit
6b67e01
1 Parent(s): 8b42024

trainer: training complete at 2024-02-19 20:05:57.117400.

Browse files
Files changed (3) hide show
  1. README.md +14 -13
  2. meta_data/README_s42_e5.md +84 -0
  3. model.safetensors +1 -1
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9360779676806765
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,13 +32,13 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.1786
36
- - B: {'precision': 0.8126064735945485, 'recall': 0.9008498583569405, 'f1-score': 0.8544558889386475, 'support': 1059.0}
37
- - I: {'precision': 0.9468377121729875, 'recall': 0.9617069701280228, 'f1-score': 0.9542144187884605, 'support': 17575.0}
38
- - O: {'precision': 0.9307744259342638, 'recall': 0.8915363881401617, 'f1-score': 0.9107329698771959, 'support': 9275.0}
39
- - Accuracy: 0.9361
40
- - Macro avg: {'precision': 0.8967395372339334, 'recall': 0.918031072208375, 'f1-score': 0.9064677592014346, 'support': 27909.0}
41
- - Weighted avg: {'precision': 0.9364060284323041, 'recall': 0.9360779676806765, 'f1-score': 0.9359789133327677, 'support': 27909.0}
42
 
43
  ## Model description
44
 
@@ -63,16 +63,17 @@ The following hyperparameters were used during training:
63
  - seed: 42
64
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
  - lr_scheduler_type: linear
66
- - num_epochs: 4
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
71
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
72
- | No log | 1.0 | 41 | 0.2836 | {'precision': 0.7968253968253968, 'recall': 0.4740321057601511, 'f1-score': 0.5944345766725874, 'support': 1059.0} | {'precision': 0.9161490683229814, 'recall': 0.9399715504978663, 'f1-score': 0.9279074339315303, 'support': 17575.0} | {'precision': 0.8717421866551314, 'recall': 0.8691105121293801, 'f1-score': 0.8704243602202786, 'support': 9275.0} | 0.8987 | {'precision': 0.8615722172678364, 'recall': 0.7610380561291326, 'f1-score': 0.7975887902747987, 'support': 27909.0} | {'precision': 0.8968636193428943, 'recall': 0.8987423411802644, 'f1-score': 0.8961505359950553, 'support': 27909.0} |
73
- | No log | 2.0 | 82 | 0.2022 | {'precision': 0.7857142857142857, 'recall': 0.8621340887629839, 'f1-score': 0.8221521837010356, 'support': 1059.0} | {'precision': 0.9355464420305919, 'recall': 0.9605120910384068, 'f1-score': 0.9478649035627053, 'support': 17575.0} | {'precision': 0.9268068482132598, 'recall': 0.8696495956873316, 'f1-score': 0.8973189453776839, 'support': 9275.0} | 0.9266 | {'precision': 0.8826891919860458, 'recall': 0.8974319251629076, 'f1-score': 0.889112010880475, 'support': 27909.0} | {'precision': 0.9269566686171867, 'recall': 0.926582822745351, 'f1-score': 0.9262968240005718, 'support': 27909.0} |
74
- | No log | 3.0 | 123 | 0.1852 | {'precision': 0.7871125611745514, 'recall': 0.9112370160528801, 'f1-score': 0.8446389496717724, 'support': 1059.0} | {'precision': 0.9400952275495515, 'recall': 0.966145092460882, 'f1-score': 0.9529421668490613, 'support': 17575.0} | {'precision': 0.940726133859181, 'recall': 0.8743935309973045, 'f1-score': 0.9063477872150201, 'support': 9275.0} | 0.9336 | {'precision': 0.8893113075277613, 'recall': 0.9172585465036889, 'f1-score': 0.9013096345786179, 'support': 27909.0} | {'precision': 0.9345000078114988, 'recall': 0.9335698161883264, 'f1-score': 0.9333479148838716, 'support': 27909.0} |
75
- | No log | 4.0 | 164 | 0.1786 | {'precision': 0.8126064735945485, 'recall': 0.9008498583569405, 'f1-score': 0.8544558889386475, 'support': 1059.0} | {'precision': 0.9468377121729875, 'recall': 0.9617069701280228, 'f1-score': 0.9542144187884605, 'support': 17575.0} | {'precision': 0.9307744259342638, 'recall': 0.8915363881401617, 'f1-score': 0.9107329698771959, 'support': 9275.0} | 0.9361 | {'precision': 0.8967395372339334, 'recall': 0.918031072208375, 'f1-score': 0.9064677592014346, 'support': 27909.0} | {'precision': 0.9364060284323041, 'recall': 0.9360779676806765, 'f1-score': 0.9359789133327677, 'support': 27909.0} |
 
76
 
77
 
78
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9400193485972267
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.1716
36
+ - B: {'precision': 0.8278829604130808, 'recall': 0.9084041548630784, 'f1-score': 0.8662764520486267, 'support': 1059.0}
37
+ - I: {'precision': 0.949054915557544, 'recall': 0.9656330014224751, 'f1-score': 0.9572721888484643, 'support': 17575.0}
38
+ - O: {'precision': 0.9364918217710095, 'recall': 0.8950943396226415, 'f1-score': 0.9153252480705623, 'support': 9275.0}
39
+ - Accuracy: 0.9400
40
+ - Macro avg: {'precision': 0.9044765659138781, 'recall': 0.9230438319693982, 'f1-score': 0.9129579629892177, 'support': 27909.0}
41
+ - Weighted avg: {'precision': 0.9402819822611845, 'recall': 0.9400193485972267, 'f1-score': 0.9398791485752167, 'support': 27909.0}
42
 
43
  ## Model description
44
 
 
63
  - seed: 42
64
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
  - lr_scheduler_type: linear
66
+ - num_epochs: 5
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
71
  |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
72
+ | No log | 1.0 | 41 | 0.2820 | {'precision': 0.8252595155709342, 'recall': 0.45042492917847027, 'f1-score': 0.582773365913256, 'support': 1059.0} | {'precision': 0.9113681210260908, 'recall': 0.9460597439544808, 'f1-score': 0.9283899606354169, 'support': 17575.0} | {'precision': 0.879608231539562, 'recall': 0.8617789757412398, 'f1-score': 0.8706023309007732, 'support': 9275.0} | 0.8992 | {'precision': 0.8720786227121957, 'recall': 0.7527545496247302, 'f1-score': 0.793921885816482, 'support': 27909.0} | {'precision': 0.8975459852217064, 'recall': 0.8992439714787345, 'f1-score': 0.896071058503503, 'support': 27909.0} |
73
+ | No log | 2.0 | 82 | 0.1953 | {'precision': 0.812897366030881, 'recall': 0.8451369216241738, 'f1-score': 0.8287037037037038, 'support': 1059.0} | {'precision': 0.9452124358178637, 'recall': 0.9531721194879089, 'f1-score': 0.9491755906850247, 'support': 17575.0} | {'precision': 0.9121629058888278, 'recall': 0.8934770889487871, 'f1-score': 0.902723311546841, 'support': 9275.0} | 0.9292 | {'precision': 0.8900909025791909, 'recall': 0.8972620433536234, 'f1-score': 0.8935342019785232, 'support': 27909.0} | {'precision': 0.9292084210199053, 'recall': 0.9292342971801211, 'f1-score': 0.9291668258665118, 'support': 27909.0} |
74
+ | No log | 3.0 | 123 | 0.1858 | {'precision': 0.7883211678832117, 'recall': 0.9178470254957507, 'f1-score': 0.8481675392670156, 'support': 1059.0} | {'precision': 0.9373831775700935, 'recall': 0.9701849217638692, 'f1-score': 0.9535020271214875, 'support': 17575.0} | {'precision': 0.9481498939429649, 'recall': 0.8674932614555256, 'f1-score': 0.9060300658746692, 'support': 9275.0} | 0.9341 | {'precision': 0.8912847464654234, 'recall': 0.9185084029050485, 'f1-score': 0.9025665440877241, 'support': 27909.0} | {'precision': 0.9353051606615684, 'recall': 0.9340714464867964, 'f1-score': 0.9337287760841115, 'support': 27909.0} |
75
+ | No log | 4.0 | 164 | 0.1704 | {'precision': 0.8296943231441049, 'recall': 0.8970727101038716, 'f1-score': 0.8620689655172413, 'support': 1059.0} | {'precision': 0.9604448520981427, 'recall': 0.9532859174964438, 'f1-score': 0.9568519946314857, 'support': 17575.0} | {'precision': 0.9158798283261803, 'recall': 0.9203234501347709, 'f1-score': 0.9180962624361388, 'support': 9275.0} | 0.9402 | {'precision': 0.9020063345228092, 'recall': 0.923560692578362, 'f1-score': 0.9123390741949553, 'support': 27909.0} | {'precision': 0.9406732585029842, 'recall': 0.9401985022752517, 'f1-score': 0.9403757810823142, 'support': 27909.0} |
76
+ | No log | 5.0 | 205 | 0.1716 | {'precision': 0.8278829604130808, 'recall': 0.9084041548630784, 'f1-score': 0.8662764520486267, 'support': 1059.0} | {'precision': 0.949054915557544, 'recall': 0.9656330014224751, 'f1-score': 0.9572721888484643, 'support': 17575.0} | {'precision': 0.9364918217710095, 'recall': 0.8950943396226415, 'f1-score': 0.9153252480705623, 'support': 9275.0} | 0.9400 | {'precision': 0.9044765659138781, 'recall': 0.9230438319693982, 'f1-score': 0.9129579629892177, 'support': 27909.0} | {'precision': 0.9402819822611845, 'recall': 0.9400193485972267, 'f1-score': 0.9398791485752167, 'support': 27909.0} |
77
 
78
 
79
  ### Framework versions
meta_data/README_s42_e5.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: allenai/longformer-base-4096
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - essays_su_g
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: longformer-spans
12
+ results:
13
+ - task:
14
+ name: Token Classification
15
+ type: token-classification
16
+ dataset:
17
+ name: essays_su_g
18
+ type: essays_su_g
19
+ config: spans
20
+ split: test
21
+ args: spans
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9400193485972267
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # longformer-spans
32
+
33
+ This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the essays_su_g dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.1716
36
+ - B: {'precision': 0.8278829604130808, 'recall': 0.9084041548630784, 'f1-score': 0.8662764520486267, 'support': 1059.0}
37
+ - I: {'precision': 0.949054915557544, 'recall': 0.9656330014224751, 'f1-score': 0.9572721888484643, 'support': 17575.0}
38
+ - O: {'precision': 0.9364918217710095, 'recall': 0.8950943396226415, 'f1-score': 0.9153252480705623, 'support': 9275.0}
39
+ - Accuracy: 0.9400
40
+ - Macro avg: {'precision': 0.9044765659138781, 'recall': 0.9230438319693982, 'f1-score': 0.9129579629892177, 'support': 27909.0}
41
+ - Weighted avg: {'precision': 0.9402819822611845, 'recall': 0.9400193485972267, 'f1-score': 0.9398791485752167, 'support': 27909.0}
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 2e-05
61
+ - train_batch_size: 8
62
+ - eval_batch_size: 8
63
+ - seed: 42
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 5
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | B | I | O | Accuracy | Macro avg | Weighted avg |
71
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|
72
+ | No log | 1.0 | 41 | 0.2820 | {'precision': 0.8252595155709342, 'recall': 0.45042492917847027, 'f1-score': 0.582773365913256, 'support': 1059.0} | {'precision': 0.9113681210260908, 'recall': 0.9460597439544808, 'f1-score': 0.9283899606354169, 'support': 17575.0} | {'precision': 0.879608231539562, 'recall': 0.8617789757412398, 'f1-score': 0.8706023309007732, 'support': 9275.0} | 0.8992 | {'precision': 0.8720786227121957, 'recall': 0.7527545496247302, 'f1-score': 0.793921885816482, 'support': 27909.0} | {'precision': 0.8975459852217064, 'recall': 0.8992439714787345, 'f1-score': 0.896071058503503, 'support': 27909.0} |
73
+ | No log | 2.0 | 82 | 0.1953 | {'precision': 0.812897366030881, 'recall': 0.8451369216241738, 'f1-score': 0.8287037037037038, 'support': 1059.0} | {'precision': 0.9452124358178637, 'recall': 0.9531721194879089, 'f1-score': 0.9491755906850247, 'support': 17575.0} | {'precision': 0.9121629058888278, 'recall': 0.8934770889487871, 'f1-score': 0.902723311546841, 'support': 9275.0} | 0.9292 | {'precision': 0.8900909025791909, 'recall': 0.8972620433536234, 'f1-score': 0.8935342019785232, 'support': 27909.0} | {'precision': 0.9292084210199053, 'recall': 0.9292342971801211, 'f1-score': 0.9291668258665118, 'support': 27909.0} |
74
+ | No log | 3.0 | 123 | 0.1858 | {'precision': 0.7883211678832117, 'recall': 0.9178470254957507, 'f1-score': 0.8481675392670156, 'support': 1059.0} | {'precision': 0.9373831775700935, 'recall': 0.9701849217638692, 'f1-score': 0.9535020271214875, 'support': 17575.0} | {'precision': 0.9481498939429649, 'recall': 0.8674932614555256, 'f1-score': 0.9060300658746692, 'support': 9275.0} | 0.9341 | {'precision': 0.8912847464654234, 'recall': 0.9185084029050485, 'f1-score': 0.9025665440877241, 'support': 27909.0} | {'precision': 0.9353051606615684, 'recall': 0.9340714464867964, 'f1-score': 0.9337287760841115, 'support': 27909.0} |
75
+ | No log | 4.0 | 164 | 0.1704 | {'precision': 0.8296943231441049, 'recall': 0.8970727101038716, 'f1-score': 0.8620689655172413, 'support': 1059.0} | {'precision': 0.9604448520981427, 'recall': 0.9532859174964438, 'f1-score': 0.9568519946314857, 'support': 17575.0} | {'precision': 0.9158798283261803, 'recall': 0.9203234501347709, 'f1-score': 0.9180962624361388, 'support': 9275.0} | 0.9402 | {'precision': 0.9020063345228092, 'recall': 0.923560692578362, 'f1-score': 0.9123390741949553, 'support': 27909.0} | {'precision': 0.9406732585029842, 'recall': 0.9401985022752517, 'f1-score': 0.9403757810823142, 'support': 27909.0} |
76
+ | No log | 5.0 | 205 | 0.1716 | {'precision': 0.8278829604130808, 'recall': 0.9084041548630784, 'f1-score': 0.8662764520486267, 'support': 1059.0} | {'precision': 0.949054915557544, 'recall': 0.9656330014224751, 'f1-score': 0.9572721888484643, 'support': 17575.0} | {'precision': 0.9364918217710095, 'recall': 0.8950943396226415, 'f1-score': 0.9153252480705623, 'support': 9275.0} | 0.9400 | {'precision': 0.9044765659138781, 'recall': 0.9230438319693982, 'f1-score': 0.9129579629892177, 'support': 27909.0} | {'precision': 0.9402819822611845, 'recall': 0.9400193485972267, 'f1-score': 0.9398791485752167, 'support': 27909.0} |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.37.2
82
+ - Pytorch 2.2.0+cu121
83
+ - Datasets 2.17.0
84
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2be6b083763e61f91651a5d70b35cfbdae6c199039ca2d3a62c98b7d1b5384f5
3
  size 592318676
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44cd8aa7100bf48c45decd89f2cf859d9cfd37a8e73f6e28d676c0265d6f5cba
3
  size 592318676