whisper-base-ca / README.md
zuazo's picture
End of training
19394e0
metadata
language:
  - ca
license: apache-2.0
base_model: openai/whisper-base
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Base Catalan
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0 ca
          type: mozilla-foundation/common_voice_13_0
          config: ca
          split: test
          args: ca
        metrics:
          - name: Wer
            type: wer
            value: 13.789654186910546

Whisper Base Catalan

This model is a fine-tuned version of openai/whisper-base on the mozilla-foundation/common_voice_13_0 ca dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2782
  • Wer: 13.7897

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 128
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0975 3.05 1000 0.3560 19.4421
0.1381 7.04 2000 0.3066 16.1486
0.1302 11.04 3000 0.2902 15.4296
0.1089 15.03 4000 0.2699 14.0726
0.0505 19.03 5000 0.2782 13.7897

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3