metadata
library_name: transformers
tags:
- llama-factory
license: apache-2.0
Info
SFT > DPO 순서가 아닌 DPO > SFT 순서로 학습시킨 모델입니다. SFT > DPO는 여기에서 확인해 주세요.
Model
- base model: meta-llama/Meta-Llama-3-8B-Instruct
Dataset
Load Model
Use the following Python code to load the model:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "youjunhyeok/llama3-8B-dpo-sft-v1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
Chat
def chat(message):
messages = [
{"role": "system", "content": "당신은 친절하고 도움이 되는 챗봇입니다."},
{"role": "user", "content": message},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=False,
temperature=0.5,
top_p=0.8,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
chat('한산도 대첩에 대해 아는 대로 얘기해봐')
Output
한산도 대첩은 조선시대에 일어난 전투로, 이순신 장군이 이끄는 조선군이 일본군을 물리친 전투입니다.
BenchMark (KOR)
# alias
A = youjunhyeok/llama3-8B-dpo-sft-v1
B = DavidAhn/Llama-3-8B-slerp-262k
C = meta-llama/Meta-Llama-3-8B
D = chihoonlee10/T3Q-ko-solar-dpo-v7.0 (24.05.24 ko 리더보드 1등)
Benchmark (macro_f1) | A | B | C | D |
---|---|---|---|---|
kobest_boolq (0-shot) | 84.7 | 33.5 | 38.2 | 34.1 |
kobest_boolq (5-shot) | 86.1 | 68.8 | 83.8 | 93.1 |
kobest_copa (0-shot) | 60.6 | 58.5 | 63.1 | 81.0 |
kobest_copa (5-shot) | 67.2 | 61.7 | 69.1 | 91.0 |
kobest_hellaswag (0-shot) | 40.0 | 43.2 | 42.1 | 55.1 |
kobest_hellaswag (5-shot) | 42.4 | 45.3 | 44.2 | 55.2 |
kobest_sentineg (0-shot) | 52.1 | 34.8 | 51.5 | 82.7 |
kobest_sentineg (5-shot) | 89.4 | 85.8 | 94.7 | 91.4 |
BenchMark (ENG)
openbookqa | hellaswag | boolq | arc_easy | arc_challenge | |
---|---|---|---|---|---|
youjunhyeok/llama3-8B-dpo-sft-v1 | 0.320 | 0.547 | 0.529 | 0.748 | 0.446 |
meta-llama/Meta-Llama-3-8B-Instruct | 0.338 | 0.576 | 0.831 | 0.815 | 0.529 |