metadata
language:
- ga
- en
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- ymoslem/IWSLT2023-GA-EN
- ymoslem/FLEURS-GA-EN
- ymoslem/BitesizeIrish-GA-EN
- ymoslem/SpokenWords-GA-EN-MTed
- ymoslem/Tatoeba-Speech-Irish
- ymoslem/Wikimedia-Speech-Irish
- ymoslem/Tatoeba-Speech-Irish-Noise-002
- ymoslem/Wikimedia-Speech-Irish-Noise-002
metrics:
- bleu
- wer
model-index:
- name: Whisper Medium GA-EN Speech Translation
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia
type: ymoslem/IWSLT2023-GA-EN
metrics:
- name: Bleu
type: bleu
value: 33.46
- name: Wer
type: wer
value: 61.773975686627644
Whisper Medium GA-EN Speech Translation
This model is a fine-tuned version of openai/whisper-medium on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset. It achieves the following results on the evaluation set:
- Loss: 1.3291
- Bleu: 33.46
- Chrf: 52.93
- Wer: 61.7740
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 9000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer |
---|---|---|---|---|---|---|
2.4998 | 0.0236 | 100 | 4.24 | 19.77 | 2.0245 | 123.5029 |
2.5999 | 0.0472 | 200 | 5.55 | 23.63 | 2.0729 | 130.1666 |
2.4062 | 0.0708 | 300 | 5.92 | 24.15 | 1.9928 | 157.4966 |
2.1866 | 0.0944 | 400 | 12.74 | 30.47 | 1.8337 | 93.4714 |
2.2485 | 0.1180 | 500 | 10.32 | 30.65 | 1.8209 | 116.4791 |
2.1521 | 0.1416 | 600 | 9.84 | 30.97 | 1.7512 | 130.1666 |
1.9324 | 0.1653 | 700 | 17.24 | 34.37 | 1.7362 | 85.4570 |
1.9703 | 0.1889 | 800 | 13.05 | 32.27 | 1.6784 | 105.7632 |
1.7299 | 0.2125 | 900 | 9.81 | 31.71 | 1.6530 | 131.6974 |
1.7822 | 0.2361 | 1000 | 11.72 | 32.5 | 1.5541 | 125.7091 |
1.5493 | 0.2597 | 1100 | 15.04 | 36.72 | 1.5773 | 92.4358 |
1.4813 | 0.2833 | 1200 | 22.08 | 40.11 | 1.5341 | 75.8667 |
1.5285 | 0.3069 | 1300 | 18.88 | 40.93 | 1.4834 | 95.4975 |
1.3255 | 0.3305 | 1400 | 20.11 | 40.82 | 1.4956 | 85.2319 |
1.3931 | 0.3541 | 1500 | 22.81 | 41.51 | 1.4718 | 72.2197 |
1.3962 | 0.3777 | 1600 | 25.43 | 43.53 | 1.3794 | 71.1842 |
1.1412 | 0.4013 | 1700 | 22.13 | 43.19 | 1.4172 | 86.9428 |
1.1132 | 0.4249 | 1800 | 21.27 | 42.45 | 1.3989 | 81.0896 |
0.9261 | 0.4485 | 1900 | 26.39 | 45.4 | 1.4147 | 70.6889 |
0.994 | 0.4721 | 2000 | 24.38 | 42.87 | 1.4365 | 77.5326 |
0.8598 | 0.4958 | 2100 | 19.36 | 41.49 | 1.3559 | 96.6231 |
0.7784 | 0.5194 | 2200 | 26.54 | 45.57 | 1.3550 | 69.5633 |
0.7858 | 0.5430 | 2300 | 27.52 | 47.58 | 1.3156 | 68.8879 |
0.7715 | 0.5666 | 2400 | 26.12 | 46.47 | 1.2985 | 72.5349 |
0.7079 | 0.5902 | 2500 | 25.62 | 47.61 | 1.3134 | 68.6177 |
0.6704 | 0.6138 | 2600 | 28.2 | 47.37 | 1.3047 | 69.1130 |
0.6579 | 0.6374 | 2700 | 29.52 | 49.39 | 1.2486 | 68.2125 |
0.502 | 0.6610 | 2800 | 28.08 | 48.99 | 1.2511 | 68.6177 |
0.4442 | 0.6846 | 2900 | 32.57 | 50.66 | 1.2800 | 63.3498 |
0.5175 | 0.7082 | 3000 | 29.69 | 48.77 | 1.2650 | 66.2314 |
0.4416 | 0.7318 | 3100 | 32.36 | 50.29 | 1.2554 | 61.9090 |
0.4529 | 0.7554 | 3200 | 32.6 | 50.94 | 1.2050 | 61.5489 |
0.4435 | 0.7790 | 3300 | 33.2 | 52.17 | 1.2103 | 61.3688 |
0.3724 | 0.8026 | 3400 | 33.89 | 52.88 | 1.1756 | 59.8379 |
0.3883 | 0.8263 | 3500 | 32.21 | 51.86 | 1.1979 | 62.0891 |
0.3534 | 0.8499 | 3600 | 32.75 | 51.85 | 1.1943 | 61.2337 |
0.326 | 0.8735 | 3700 | 32.43 | 51.5 | 1.1891 | 62.1342 |
0.305 | 0.8971 | 3800 | 33.43 | 51.45 | 1.1858 | 59.4327 |
0.2258 | 0.9207 | 3900 | 32.53 | 51.42 | 1.1827 | 61.1887 |
0.3104 | 0.9443 | 4000 | 32.1 | 51.33 | 1.1857 | 61.2337 |
0.3847 | 0.9679 | 4100 | 1.3506 | 29.91 | 48.63 | 66.5466 |
0.426 | 0.9915 | 4200 | 1.3458 | 25.68 | 45.27 | 70.1036 |
0.2622 | 1.0151 | 4300 | 1.3544 | 27.52 | 48.0 | 66.4115 |
0.2429 | 1.0387 | 4400 | 1.4330 | 22.57 | 45.45 | 79.9190 |
0.269 | 1.0623 | 4500 | 1.4399 | 24.7 | 45.73 | 74.7411 |
0.3171 | 1.0859 | 4600 | 1.3711 | 29.55 | 47.78 | 68.4827 |
0.2321 | 1.1095 | 4700 | 1.4350 | 24.73 | 45.52 | 77.1724 |
0.2595 | 1.1331 | 4800 | 1.3851 | 30.54 | 47.85 | 65.1508 |
0.2426 | 1.1568 | 4900 | 1.4109 | 28.87 | 47.5 | 68.3926 |
0.2496 | 1.1804 | 5000 | 1.3717 | 29.97 | 48.74 | 68.6628 |
0.2551 | 1.2040 | 5100 | 1.4157 | 29.92 | 47.59 | 66.3215 |
0.231 | 1.2276 | 5200 | 1.3908 | 28.97 | 47.9 | 66.0063 |
0.245 | 1.2512 | 5300 | 1.4082 | 30.22 | 47.71 | 63.7100 |
0.284 | 1.2748 | 5400 | 1.3696 | 27.47 | 48.31 | 70.7789 |
0.2284 | 1.2984 | 5500 | 1.4044 | 27.63 | 47.37 | 68.2575 |
0.2457 | 1.3220 | 5600 | 1.3722 | 31.38 | 48.8 | 64.7906 |
0.2346 | 1.3456 | 5700 | 1.3397 | 33.61 | 50.14 | 60.3332 |
0.2088 | 1.3692 | 5800 | 1.3920 | 30.84 | 48.51 | 65.4660 |
0.1832 | 1.3928 | 5900 | 1.3892 | 31.47 | 49.56 | 64.5205 |
0.2171 | 1.4164 | 6000 | 1.3606 | 32.51 | 49.8 | 63.1697 |
0.1799 | 1.4400 | 6100 | 1.4130 | 30.8 | 50.05 | 63.3949 |
0.1756 | 1.4636 | 6200 | 1.3458 | 30.25 | 50.16 | 66.1864 |
0.1617 | 1.4873 | 6300 | 1.3971 | 32.27 | 50.74 | 63.4849 |
0.1909 | 1.5109 | 6400 | 1.4275 | 27.41 | 47.04 | 72.0396 |
0.1516 | 1.5345 | 6500 | 1.3591 | 30.1 | 49.05 | 66.0513 |
0.1892 | 1.5581 | 6600 | 1.3646 | 31.72 | 48.17 | 62.6294 |
0.2086 | 1.5817 | 6700 | 1.3314 | 28.85 | 49.68 | 67.3120 |
0.1253 | 1.6053 | 6800 | 1.3461 | 29.84 | 49.13 | 66.5466 |
0.1307 | 1.6289 | 6900 | 1.3671 | 29.39 | 48.77 | 67.7172 |
0.1376 | 1.6525 | 7000 | 1.3769 | 31.27 | 47.97 | 66.5916 |
0.1593 | 1.6761 | 7100 | 1.3699 | 30.53 | 49.33 | 65.4660 |
0.1604 | 1.6997 | 7200 | 1.3540 | 31.99 | 48.93 | 63.8001 |
0.118 | 1.7233 | 7300 | 1.3523 | 29.52 | 49.26 | 67.5822 |
0.1148 | 1.7469 | 7400 | 1.3130 | 31.49 | 49.49 | 62.8996 |
0.0946 | 1.7705 | 7500 | 1.3468 | 32.6 | 49.76 | 63.1697 |
0.0891 | 1.7941 | 7600 | 1.3268 | 31.84 | 50.41 | 63.5750 |
0.103 | 1.8178 | 7700 | 1.3243 | 32.81 | 50.61 | 60.3782 |
0.1016 | 1.8414 | 7800 | 1.2945 | 33.07 | 53.14 | 61.0086 |
0.1014 | 1.8650 | 7900 | 1.3163 | 32.35 | 51.28 | 63.3498 |
0.1257 | 1.8886 | 8000 | 1.3246 | 31.65 | 51.86 | 61.7740 |
0.0859 | 1.9122 | 8100 | 1.3247 | 30.69 | 51.47 | 64.4304 |
0.0943 | 1.9358 | 8200 | 1.3030 | 33.06 | 52.31 | 61.6389 |
0.11 | 1.9594 | 8300 | 1.2866 | 33.32 | 52.83 | 60.1081 |
0.0723 | 1.9830 | 8400 | 1.3071 | 32.96 | 51.64 | 61.7740 |
0.0312 | 2.0066 | 8500 | 1.3202 | 33.2 | 52.78 | 62.0891 |
0.0303 | 2.0302 | 8600 | 1.3348 | 33.24 | 52.75 | 62.4043 |
0.02 | 2.0538 | 8700 | 1.3447 | 33.32 | 52.6 | 62.0891 |
0.0329 | 2.0774 | 8800 | 1.3328 | 34.04 | 52.93 | 60.7384 |
0.0216 | 2.1010 | 8900 | 1.3266 | 33.47 | 52.75 | 61.3237 |
0.0224 | 2.1246 | 9000 | 1.3291 | 33.46 | 52.93 | 61.7740 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1