|
--- |
|
license: apache-2.0 |
|
base_model: xiuyul/mamba-2.8b-ultrachat |
|
datasets: |
|
- HuggingFaceH4/ultrafeedback_binarized |
|
model-index: |
|
- name: mamba-2.8b-zephyr |
|
results: [] |
|
--- |
|
|
|
|
|
# mamba-2.8b-zephyr |
|
|
|
This model is a fine-tuned version of [xiuyul/mamba-2.8b-ultrachat](https://huggingface.co/xiuyul/mamba-2.8b-ultrachat) on the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) dataset trained using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). |
|
|
|
The base model, [xiuyul/mamba-2.8b-ultrachat](https://huggingface.co/xiuyul/mamba-2.8b-ultrachat), was instruction-tuned from [state-spaces/mamba-2.8b-slimpj](https://huggingface.co/state-spaces/mamba-2.8b-slimpj) on the [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset. |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4996 |
|
- Rewards/chosen: -0.4523 |
|
- Rewards/rejected: -1.6105 |
|
- Rewards/accuracies: 0.7857 |
|
- Rewards/margins: 1.1582 |
|
- Logps/rejected: -290.1885 |
|
- Logps/chosen: -359.0926 |
|
- Logits/rejected: 23.0423 |
|
- Logits/chosen: 23.1861 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-07 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.6639 | 0.1 | 100 | 0.6593 | 0.1762 | 0.0957 | 0.6151 | 0.0805 | -273.1268 | -352.8086 | 23.5852 | 23.8356 | |
|
| 0.5804 | 0.21 | 200 | 0.5836 | 0.0780 | -0.3396 | 0.6508 | 0.4176 | -277.4798 | -353.7904 | 23.5872 | 23.8302 | |
|
| 0.5815 | 0.31 | 300 | 0.5510 | -0.1923 | -0.7857 | 0.7421 | 0.5934 | -281.9403 | -356.4929 | 23.5224 | 23.7498 | |
|
| 0.5526 | 0.41 | 400 | 0.5361 | -0.1953 | -0.8928 | 0.7341 | 0.6975 | -283.0119 | -356.5235 | 23.5033 | 23.7264 | |
|
| 0.5225 | 0.52 | 500 | 0.5262 | -0.1041 | -0.8809 | 0.7540 | 0.7768 | -282.8929 | -355.6114 | 23.4578 | 23.6718 | |
|
| 0.5577 | 0.62 | 600 | 0.5156 | -0.1946 | -1.0285 | 0.7659 | 0.8339 | -284.3683 | -356.5158 | 23.4466 | 23.6618 | |
|
| 0.5515 | 0.72 | 700 | 0.5163 | 0.0648 | -0.7650 | 0.7659 | 0.8298 | -281.7334 | -353.9220 | 23.4243 | 23.6343 | |
|
| 0.5159 | 0.83 | 800 | 0.5113 | -0.1400 | -1.0595 | 0.7778 | 0.9195 | -284.6783 | -355.9698 | 23.4095 | 23.6179 | |
|
| 0.5242 | 0.93 | 900 | 0.5089 | -0.0383 | -0.9148 | 0.7659 | 0.8766 | -283.2318 | -354.9529 | 23.4035 | 23.6145 | |
|
| 0.4618 | 1.03 | 1000 | 0.5077 | -0.1223 | -1.0201 | 0.7778 | 0.8978 | -284.2841 | -355.7929 | 23.3805 | 23.5856 | |
|
| 0.4484 | 1.14 | 1100 | 0.5019 | -0.3311 | -1.3299 | 0.7778 | 0.9989 | -287.3827 | -357.8807 | 23.3427 | 23.5381 | |
|
| 0.4228 | 1.24 | 1200 | 0.5034 | -0.0617 | -1.0989 | 0.7619 | 1.0372 | -285.0726 | -355.1871 | 23.3191 | 23.5101 | |
|
| 0.4306 | 1.34 | 1300 | 0.5032 | -0.1585 | -1.1849 | 0.7698 | 1.0264 | -285.9320 | -356.1549 | 23.2889 | 23.4787 | |
|
| 0.4678 | 1.45 | 1400 | 0.5030 | -0.2351 | -1.1601 | 0.7817 | 0.9250 | -285.6841 | -356.9207 | 23.2661 | 23.4551 | |
|
| 0.4317 | 1.55 | 1500 | 0.4997 | -0.1401 | -1.1458 | 0.7619 | 1.0057 | -285.5417 | -355.9716 | 23.2621 | 23.4524 | |
|
| 0.4363 | 1.65 | 1600 | 0.5010 | -0.3313 | -1.3592 | 0.7738 | 1.0279 | -287.6752 | -357.8830 | 23.2320 | 23.4178 | |
|
| 0.408 | 1.76 | 1700 | 0.4989 | -0.2456 | -1.3073 | 0.7778 | 1.0617 | -287.1568 | -357.0265 | 23.2135 | 23.3950 | |
|
| 0.4076 | 1.86 | 1800 | 0.4996 | -0.3904 | -1.4365 | 0.7659 | 1.0461 | -288.4482 | -358.4738 | 23.1866 | 23.3617 | |
|
| 0.4547 | 1.96 | 1900 | 0.5008 | -0.2516 | -1.2648 | 0.7857 | 1.0133 | -286.7317 | -357.0858 | 23.1605 | 23.3298 | |
|
| 0.3469 | 2.07 | 2000 | 0.4977 | -0.2868 | -1.3916 | 0.7778 | 1.1048 | -287.9999 | -357.4383 | 23.1361 | 23.2990 | |
|
| 0.3547 | 2.17 | 2100 | 0.4987 | -0.4251 | -1.5510 | 0.7619 | 1.1259 | -289.5935 | -358.8210 | 23.1142 | 23.2730 | |
|
| 0.3468 | 2.27 | 2200 | 0.4979 | -0.2674 | -1.3945 | 0.7778 | 1.1271 | -288.0285 | -357.2443 | 23.0998 | 23.2561 | |
|
| 0.3432 | 2.37 | 2300 | 0.5026 | -0.3792 | -1.4630 | 0.7738 | 1.0838 | -288.7130 | -358.3621 | 23.0726 | 23.2233 | |
|
| 0.324 | 2.48 | 2400 | 0.5022 | -0.4892 | -1.6090 | 0.7698 | 1.1198 | -290.1737 | -359.4620 | 23.0543 | 23.2006 | |
|
| 0.3556 | 2.58 | 2500 | 0.5010 | -0.5270 | -1.6576 | 0.7817 | 1.1306 | -290.6595 | -359.8404 | 23.0520 | 23.1981 | |
|
| 0.3277 | 2.68 | 2600 | 0.4990 | -0.5401 | -1.6816 | 0.7778 | 1.1415 | -290.8996 | -359.9708 | 23.0449 | 23.1901 | |
|
| 0.3262 | 2.79 | 2700 | 0.4993 | -0.4952 | -1.6410 | 0.7778 | 1.1458 | -290.4932 | -359.5220 | 23.0439 | 23.1878 | |
|
| 0.3566 | 2.89 | 2800 | 0.4985 | -0.4474 | -1.5918 | 0.7778 | 1.1443 | -290.0010 | -359.0445 | 23.0433 | 23.1871 | |
|
| 0.3386 | 2.99 | 2900 | 0.4983 | -0.4598 | -1.6040 | 0.7817 | 1.1442 | -290.1235 | -359.1679 | 23.0427 | 23.1866 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|