Edit model card

Traditional Chinese Llama2

  • Github repo: https://github.com/MIBlue119/traditional_chinese_llama2/
  • This is a practice to finetune Llama2 on traditional chinese instruction dataset at Llama2 chat model.
    • Use qlora and the alpaca translated dataset to finetune llama2-7b model at rtx3090(24GB VRAM) with 9 hours.

Thanks for these references:

Resources

Online Demo

Use which pretrained model

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Framework versions

  • PEFT 0.4.0

Usage

Installation dependencies

$pip install transformers torch peft

Run the inference

import transformers
import torch
from transformers import AutoTokenizer, TextStreamer

# Use the same tokenizer from the source model
model_id="weiren119/traditional_chinese_qlora_llama2_merged"
tokenizer = AutoTokenizer.from_pretrained(original_model_path, use_fast=False)

# Load fine-tuned model, you can replace this with your own model
model = AutoPeftModelForCausalLM.from_pretrained(
        model_id,
        load_in_4bit=model_id.endswith("4bit"),
        torch_dtype=torch.float16,
        device_map='auto'
)

system_prompt = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.

            If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""




def get_prompt(message: str, chat_history: list[tuple[str, str]]) -> str:
    texts = [f'[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
    for user_input, response in chat_history:
        texts.append(f'{user_input.strip()} [/INST] {response.strip()} </s><s> [INST] ')
    texts.append(f'{message.strip()} [/INST]')
    return ''.join(texts)


print ("="*100)
print ("-"*80)
print ("Have a try!")

s = ''
chat_history = []
while True:
    s = input("User: ")
    if s != '':
        prompt = get_prompt(s, chat_history)
        print ('Answer:')
        tokens = tokenizer(prompt, return_tensors='pt').input_ids
        #generate_ids = model.generate(tokens.cuda(), max_new_tokens=4096, streamer=streamer)
        generate_ids = model.generate(input_ids=tokens.cuda(), max_new_tokens=4096, streamer=streamer)
        output = tokenizer.decode(generate_ids[0, len(tokens[0]):-1]).strip()
        chat_history.append([s, output])
        print ('-'*80)
Downloads last month
0
Safetensors
Model size
6.74B params
Tensor type
F32
·
FP16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .