upernet-convnext-base-AIData
This model is a fine-tuned version of openmmlab/upernet-convnext-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0004
- Mean Iou: 0.8811
- Mean Accuracy: 0.9308
- Overall Accuracy: 0.9999
- Per Category Iou: [0.9999341825925119, 0.7621714778112882]
- Per Category Accuracy: [0.9999680440896173, 0.861665854846566]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
0.0005 | 31.25 | 500 | 0.0004 | 0.8811 | 0.9308 | 0.9999 | [0.9999341825925119, 0.7621714778112882] | [0.9999680440896173, 0.861665854846566] |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 67
Model tree for wangzfsh/upernet-convnext-base-AIData-1115
Base model
openmmlab/upernet-convnext-base