Edit model card

upernet-convnext-base-AIData

This model is a fine-tuned version of openmmlab/upernet-convnext-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0004
  • Mean Iou: 0.8811
  • Mean Accuracy: 0.9308
  • Overall Accuracy: 0.9999
  • Per Category Iou: [0.9999341825925119, 0.7621714778112882]
  • Per Category Accuracy: [0.9999680440896173, 0.861665854846566]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.0005 31.25 500 0.0004 0.8811 0.9308 0.9999 [0.9999341825925119, 0.7621714778112882] [0.9999680440896173, 0.861665854846566]

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
67
Safetensors
Model size
122M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for wangzfsh/upernet-convnext-base-AIData-1115

Finetuned
(4)
this model