upernet-convnext-base-AIData
This model is a fine-tuned version of openmmlab/upernet-convnext-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0005
- Mean Iou: 0.8533
- Mean Accuracy: 0.9119
- Overall Accuracy: 0.9999
- Per Category Iou: [0.9998919682572691, 0.7067961165048544]
- Per Category Accuracy: [0.9999476505782227, 0.8238400603545831]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
0.0005 | 11.7647 | 200 | 0.0005 | 0.8681 | 0.9390 | 0.9999 | [0.999900551853742, 0.7362428842504743] | [0.9999390647960632, 0.8781591852131271] |
0.0004 | 23.5294 | 400 | 0.0005 | 0.8520 | 0.9004 | 0.9999 | [0.9998936383955853, 0.7041459369817579] | [0.9999565941013053, 0.8008298755186722] |
0.0004 | 35.2941 | 600 | 0.0005 | 0.8515 | 0.9047 | 0.9999 | [0.9998919687467731, 0.7031454783748362] | [0.9999521819632512, 0.8095058468502452] |
0.0004 | 47.0588 | 800 | 0.0005 | 0.8533 | 0.9119 | 0.9999 | [0.9998919682572691, 0.7067961165048544] | [0.9999476505782227, 0.8238400603545831] |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 83
Model tree for wangzfsh/upernet-convnext-base-AIData-0.8533
Base model
openmmlab/upernet-convnext-base