Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.3.0

base_model: mistralai/Mixtral-8x7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: Open-Orca/SlimOrca
    type: sharegpt
    conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: /wb-mixtral/slimorca-mixstral-8x7b
save_total_limit: 1
hub_model_id:
dataloader_num_workers: 8
dataloader_prefetch_factor: 4
dataloader_pin_memory: true

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 64
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out:
lora_modules_to_save:
  - lm_head
  - embed_tokens
lora_target_linear: true

wandb_project: mixtral
wandb_entity: capecape
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.001
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
eval_steps: 0.05
save_steps: 0.25
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  eos_token: "<|im_end|>"
tokens:
  - "<|im_start|>"

Mixtral-8x7b-Remixtral

This model is a fine-tuned version of mistralai/Mixtral-8x7B-v0.1 on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 25
  • num_epochs: 2

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.1+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Framework versions

  • PEFT 0.6.0
Downloads last month
11
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for wandb/Mixtral-8x7b-Remixtral

Adapter
(89)
this model