File size: 25,136 Bytes
de5272a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1105
- Answer: {'precision': 0.7390326209223848, 'recall': 0.8121137206427689, 'f1': 0.773851590106007, 'number': 809}
- Header: {'precision': 0.4206896551724138, 'recall': 0.5126050420168067, 'f1': 0.46212121212121215, 'number': 119}
- Question: {'precision': 0.8176795580110497, 'recall': 0.8338028169014085, 'f1': 0.8256624825662483, 'number': 1065}
- Overall Precision: 0.7575
- Overall Recall: 0.8058
- Overall F1: 0.7809
- Overall Accuracy: 0.8108

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                        | Header                                                                                                      | Question                                                                                                    | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.7888        | 1.0   | 10   | 1.5431          | {'precision': 0.023681377825618945, 'recall': 0.027194066749072928, 'f1': 0.02531645569620253, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.23876404494382023, 'recall': 0.1596244131455399, 'f1': 0.19133370849746764, 'number': 1065} | 0.1170            | 0.0963         | 0.1057     | 0.3970           |
| 1.3827        | 2.0   | 20   | 1.1583          | {'precision': 0.2289156626506024, 'recall': 0.21137206427688504, 'f1': 0.21979434447300772, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.46695652173913044, 'recall': 0.504225352112676, 'f1': 0.48487584650112864, 'number': 1065}  | 0.3732            | 0.3552         | 0.3640     | 0.6072           |
| 1.0226        | 3.0   | 30   | 0.8747          | {'precision': 0.521594684385382, 'recall': 0.5822002472187886, 'f1': 0.5502336448598131, 'number': 809}       | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.6095238095238096, 'recall': 0.6610328638497652, 'f1': 0.6342342342342343, 'number': 1065}   | 0.5595            | 0.5896         | 0.5742     | 0.7279           |
| 0.7648        | 4.0   | 40   | 0.7658          | {'precision': 0.5875706214689266, 'recall': 0.7713226205191595, 'f1': 0.667022982362373, 'number': 809}       | {'precision': 0.22058823529411764, 'recall': 0.12605042016806722, 'f1': 0.16042780748663102, 'number': 119} | {'precision': 0.6698357821953328, 'recall': 0.7276995305164319, 'f1': 0.6975697569756976, 'number': 1065}   | 0.6183            | 0.7095         | 0.6607     | 0.7635           |
| 0.6327        | 5.0   | 50   | 0.6972          | {'precision': 0.6389473684210526, 'recall': 0.7503090234857849, 'f1': 0.6901648664013643, 'number': 809}      | {'precision': 0.3448275862068966, 'recall': 0.16806722689075632, 'f1': 0.22598870056497172, 'number': 119}  | {'precision': 0.7047619047619048, 'recall': 0.7643192488262911, 'f1': 0.7333333333333334, 'number': 1065}   | 0.6662            | 0.7230         | 0.6935     | 0.7853           |
| 0.5253        | 6.0   | 60   | 0.6675          | {'precision': 0.667027027027027, 'recall': 0.7626699629171817, 'f1': 0.7116493656286043, 'number': 809}       | {'precision': 0.2248062015503876, 'recall': 0.24369747899159663, 'f1': 0.2338709677419355, 'number': 119}   | {'precision': 0.6939586645468998, 'recall': 0.819718309859155, 'f1': 0.751614291863969, 'number': 1065}     | 0.6570            | 0.7622         | 0.7057     | 0.7984           |
| 0.4339        | 7.0   | 70   | 0.6615          | {'precision': 0.7005524861878453, 'recall': 0.7836835599505563, 'f1': 0.7397899649941657, 'number': 809}      | {'precision': 0.24342105263157895, 'recall': 0.31092436974789917, 'f1': 0.27306273062730624, 'number': 119} | {'precision': 0.7237386269644334, 'recall': 0.8215962441314554, 'f1': 0.7695690413368513, 'number': 1065}   | 0.6823            | 0.7757         | 0.7260     | 0.8022           |
| 0.3775        | 8.0   | 80   | 0.6598          | {'precision': 0.7138009049773756, 'recall': 0.7799752781211372, 'f1': 0.7454223272297696, 'number': 809}      | {'precision': 0.27007299270072993, 'recall': 0.31092436974789917, 'f1': 0.2890625, 'number': 119}           | {'precision': 0.7389491242702252, 'recall': 0.831924882629108, 'f1': 0.7826855123674912, 'number': 1065}    | 0.7               | 0.7797         | 0.7377     | 0.8078           |
| 0.3219        | 9.0   | 90   | 0.6811          | {'precision': 0.7013422818791947, 'recall': 0.7750309023485785, 'f1': 0.7363476218438051, 'number': 809}      | {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119}   | {'precision': 0.7541268462206777, 'recall': 0.8150234741784037, 'f1': 0.7833935018050542, 'number': 1065}   | 0.7061            | 0.7692         | 0.7363     | 0.8004           |
| 0.2732        | 10.0  | 100  | 0.6725          | {'precision': 0.7259668508287292, 'recall': 0.8121137206427689, 'f1': 0.766627771295216, 'number': 809}       | {'precision': 0.3053435114503817, 'recall': 0.33613445378151263, 'f1': 0.32000000000000006, 'number': 119}  | {'precision': 0.7798573975044564, 'recall': 0.8215962441314554, 'f1': 0.800182898948331, 'number': 1065}    | 0.7285            | 0.7888         | 0.7574     | 0.8113           |
| 0.2275        | 11.0  | 110  | 0.7076          | {'precision': 0.7237569060773481, 'recall': 0.8096415327564895, 'f1': 0.764294049008168, 'number': 809}       | {'precision': 0.3381294964028777, 'recall': 0.3949579831932773, 'f1': 0.3643410852713178, 'number': 119}    | {'precision': 0.7820284697508897, 'recall': 0.8253521126760563, 'f1': 0.8031064412973961, 'number': 1065}   | 0.7292            | 0.7933         | 0.7599     | 0.8109           |
| 0.195         | 12.0  | 120  | 0.7281          | {'precision': 0.7301231802911534, 'recall': 0.8059332509270705, 'f1': 0.7661574618096357, 'number': 809}      | {'precision': 0.3141025641025641, 'recall': 0.4117647058823529, 'f1': 0.3563636363636363, 'number': 119}    | {'precision': 0.7923497267759563, 'recall': 0.8169014084507042, 'f1': 0.8044382801664355, 'number': 1065}   | 0.7317            | 0.7883         | 0.7589     | 0.8085           |
| 0.1765        | 13.0  | 130  | 0.7390          | {'precision': 0.7318181818181818, 'recall': 0.796044499381953, 'f1': 0.7625814091178211, 'number': 809}       | {'precision': 0.358974358974359, 'recall': 0.47058823529411764, 'f1': 0.40727272727272734, 'number': 119}   | {'precision': 0.781195079086116, 'recall': 0.8347417840375587, 'f1': 0.8070812528370404, 'number': 1065}    | 0.7309            | 0.7973         | 0.7627     | 0.8164           |
| 0.1463        | 14.0  | 140  | 0.7731          | {'precision': 0.7437923250564334, 'recall': 0.8145859085290482, 'f1': 0.7775811209439528, 'number': 809}      | {'precision': 0.3368421052631579, 'recall': 0.5378151260504201, 'f1': 0.4142394822006472, 'number': 119}    | {'precision': 0.7963800904977375, 'recall': 0.8262910798122066, 'f1': 0.8110599078341013, 'number': 1065}   | 0.7350            | 0.8043         | 0.7681     | 0.8163           |
| 0.1292        | 15.0  | 150  | 0.7745          | {'precision': 0.738933030646992, 'recall': 0.8046971569839307, 'f1': 0.770414201183432, 'number': 809}        | {'precision': 0.3719512195121951, 'recall': 0.5126050420168067, 'f1': 0.431095406360424, 'number': 119}     | {'precision': 0.7852650494159928, 'recall': 0.8206572769953052, 'f1': 0.8025711662075299, 'number': 1065}   | 0.7349            | 0.7958         | 0.7642     | 0.8111           |
| 0.1209        | 16.0  | 160  | 0.8221          | {'precision': 0.7181719260065288, 'recall': 0.8158220024721878, 'f1': 0.7638888888888888, 'number': 809}      | {'precision': 0.3333333333333333, 'recall': 0.4789915966386555, 'f1': 0.393103448275862, 'number': 119}     | {'precision': 0.7963302752293578, 'recall': 0.8150234741784037, 'f1': 0.805568445475638, 'number': 1065}    | 0.7271            | 0.7953         | 0.7596     | 0.8063           |
| 0.1095        | 17.0  | 170  | 0.8437          | {'precision': 0.7384441939120632, 'recall': 0.8096415327564895, 'f1': 0.7724056603773586, 'number': 809}      | {'precision': 0.3673469387755102, 'recall': 0.453781512605042, 'f1': 0.406015037593985, 'number': 119}      | {'precision': 0.7715030408340573, 'recall': 0.8338028169014085, 'f1': 0.8014440433212997, 'number': 1065}   | 0.7309            | 0.8013         | 0.7645     | 0.8098           |
| 0.0888        | 18.0  | 180  | 0.8539          | {'precision': 0.7426556991774383, 'recall': 0.7812113720642769, 'f1': 0.7614457831325301, 'number': 809}      | {'precision': 0.3716216216216216, 'recall': 0.46218487394957986, 'f1': 0.41198501872659177, 'number': 119}  | {'precision': 0.784070796460177, 'recall': 0.831924882629108, 'f1': 0.8072892938496583, 'number': 1065}     | 0.7388            | 0.7893         | 0.7632     | 0.8063           |
| 0.0796        | 19.0  | 190  | 0.8697          | {'precision': 0.7249154453213078, 'recall': 0.7948084054388134, 'f1': 0.7582547169811321, 'number': 809}      | {'precision': 0.39416058394160586, 'recall': 0.453781512605042, 'f1': 0.421875, 'number': 119}              | {'precision': 0.7835232252410167, 'recall': 0.8394366197183099, 'f1': 0.8105167724388033, 'number': 1065}   | 0.7349            | 0.7983         | 0.7653     | 0.8091           |
| 0.0747        | 20.0  | 200  | 0.9098          | {'precision': 0.7414965986394558, 'recall': 0.8084054388133498, 'f1': 0.7735068007096393, 'number': 809}      | {'precision': 0.33695652173913043, 'recall': 0.5210084033613446, 'f1': 0.40924092409240925, 'number': 119}  | {'precision': 0.8124419684308264, 'recall': 0.8215962441314554, 'f1': 0.8169934640522875, 'number': 1065}   | 0.7424            | 0.7983         | 0.7693     | 0.8074           |
| 0.0654        | 21.0  | 210  | 0.9180          | {'precision': 0.7411225658648339, 'recall': 0.799752781211372, 'f1': 0.7693222354340071, 'number': 809}       | {'precision': 0.3905325443786982, 'recall': 0.5546218487394958, 'f1': 0.4583333333333333, 'number': 119}    | {'precision': 0.8036866359447005, 'recall': 0.8187793427230047, 'f1': 0.8111627906976744, 'number': 1065}   | 0.7452            | 0.7953         | 0.7694     | 0.8082           |
| 0.0545        | 22.0  | 220  | 0.9456          | {'precision': 0.7479768786127168, 'recall': 0.799752781211372, 'f1': 0.7729988052568698, 'number': 809}       | {'precision': 0.34502923976608185, 'recall': 0.4957983193277311, 'f1': 0.4068965517241379, 'number': 119}   | {'precision': 0.7932910244786945, 'recall': 0.8215962441314554, 'f1': 0.8071955719557196, 'number': 1065}   | 0.7391            | 0.7933         | 0.7652     | 0.8064           |
| 0.0526        | 23.0  | 230  | 0.9552          | {'precision': 0.7383720930232558, 'recall': 0.7849196538936959, 'f1': 0.7609346914319952, 'number': 809}      | {'precision': 0.36075949367088606, 'recall': 0.4789915966386555, 'f1': 0.41155234657039713, 'number': 119}  | {'precision': 0.7947794779477948, 'recall': 0.8291079812206573, 'f1': 0.8115808823529413, 'number': 1065}   | 0.7398            | 0.7903         | 0.7642     | 0.8048           |
| 0.0465        | 24.0  | 240  | 0.9799          | {'precision': 0.7411111111111112, 'recall': 0.8244746600741656, 'f1': 0.780573434757168, 'number': 809}       | {'precision': 0.44274809160305345, 'recall': 0.48739495798319327, 'f1': 0.464, 'number': 119}               | {'precision': 0.7863475177304965, 'recall': 0.8328638497652582, 'f1': 0.8089375284997721, 'number': 1065}   | 0.7466            | 0.8088         | 0.7765     | 0.8082           |
| 0.0402        | 25.0  | 250  | 0.9705          | {'precision': 0.7559591373439274, 'recall': 0.823238566131026, 'f1': 0.7881656804733728, 'number': 809}       | {'precision': 0.40559440559440557, 'recall': 0.48739495798319327, 'f1': 0.4427480916030534, 'number': 119}  | {'precision': 0.785204991087344, 'recall': 0.8272300469483568, 'f1': 0.8056698673982624, 'number': 1065}    | 0.7479            | 0.8053         | 0.7755     | 0.8091           |
| 0.0426        | 26.0  | 260  | 0.9772          | {'precision': 0.7350917431192661, 'recall': 0.792336217552534, 'f1': 0.7626412849494348, 'number': 809}       | {'precision': 0.40816326530612246, 'recall': 0.5042016806722689, 'f1': 0.45112781954887216, 'number': 119}  | {'precision': 0.8149498632634458, 'recall': 0.8394366197183099, 'f1': 0.8270120259019426, 'number': 1065}   | 0.7538            | 0.8003         | 0.7763     | 0.8103           |
| 0.0377        | 27.0  | 270  | 0.9820          | {'precision': 0.7414965986394558, 'recall': 0.8084054388133498, 'f1': 0.7735068007096393, 'number': 809}      | {'precision': 0.4405594405594406, 'recall': 0.5294117647058824, 'f1': 0.48091603053435117, 'number': 119}   | {'precision': 0.8223866790009251, 'recall': 0.8347417840375587, 'f1': 0.8285181733457596, 'number': 1065}   | 0.7626            | 0.8058         | 0.7836     | 0.8106           |
| 0.031         | 28.0  | 280  | 1.0041          | {'precision': 0.734717416378316, 'recall': 0.7873918417799752, 'f1': 0.7601431980906921, 'number': 809}       | {'precision': 0.4064516129032258, 'recall': 0.5294117647058824, 'f1': 0.4598540145985402, 'number': 119}    | {'precision': 0.8052064631956912, 'recall': 0.8422535211267606, 'f1': 0.8233134465351079, 'number': 1065}   | 0.7477            | 0.8013         | 0.7736     | 0.8075           |
| 0.0322        | 29.0  | 290  | 1.0408          | {'precision': 0.7292817679558011, 'recall': 0.8158220024721878, 'f1': 0.7701283547257876, 'number': 809}      | {'precision': 0.4027777777777778, 'recall': 0.48739495798319327, 'f1': 0.44106463878326996, 'number': 119}  | {'precision': 0.8104693140794224, 'recall': 0.8431924882629108, 'f1': 0.8265071329958583, 'number': 1065}   | 0.7492            | 0.8108         | 0.7788     | 0.8062           |
| 0.0292        | 30.0  | 300  | 1.0359          | {'precision': 0.7351598173515982, 'recall': 0.796044499381953, 'f1': 0.7643916913946588, 'number': 809}       | {'precision': 0.3727810650887574, 'recall': 0.5294117647058824, 'f1': 0.4375, 'number': 119}                | {'precision': 0.8218283582089553, 'recall': 0.8272300469483568, 'f1': 0.8245203556387459, 'number': 1065}   | 0.7501            | 0.7968         | 0.7727     | 0.8045           |
| 0.0259        | 31.0  | 310  | 1.0452          | {'precision': 0.7275784753363229, 'recall': 0.8022249690976514, 'f1': 0.7630805408583187, 'number': 809}      | {'precision': 0.41732283464566927, 'recall': 0.44537815126050423, 'f1': 0.43089430894308944, 'number': 119} | {'precision': 0.8238532110091743, 'recall': 0.8431924882629108, 'f1': 0.8334106728538283, 'number': 1065}   | 0.7587            | 0.8028         | 0.7801     | 0.8082           |
| 0.0268        | 32.0  | 320  | 1.0653          | {'precision': 0.7338618346545867, 'recall': 0.8009888751545118, 'f1': 0.7659574468085106, 'number': 809}      | {'precision': 0.39473684210526316, 'recall': 0.5042016806722689, 'f1': 0.4428044280442805, 'number': 119}   | {'precision': 0.7909252669039146, 'recall': 0.8347417840375587, 'f1': 0.8122430333485611, 'number': 1065}   | 0.7397            | 0.8013         | 0.7693     | 0.8040           |
| 0.0258        | 33.0  | 330  | 1.0603          | {'precision': 0.7429537767756482, 'recall': 0.8145859085290482, 'f1': 0.777122641509434, 'number': 809}       | {'precision': 0.3885350318471338, 'recall': 0.5126050420168067, 'f1': 0.4420289855072464, 'number': 119}    | {'precision': 0.7969314079422383, 'recall': 0.8291079812206573, 'f1': 0.8127013345605153, 'number': 1065}   | 0.7449            | 0.8043         | 0.7735     | 0.8077           |
| 0.0236        | 34.0  | 340  | 1.0683          | {'precision': 0.7353951890034365, 'recall': 0.7935723114956736, 'f1': 0.7633769322235434, 'number': 809}      | {'precision': 0.36470588235294116, 'recall': 0.5210084033613446, 'f1': 0.4290657439446367, 'number': 119}   | {'precision': 0.8066298342541437, 'recall': 0.8225352112676056, 'f1': 0.814504881450488, 'number': 1065}    | 0.7421            | 0.7928         | 0.7666     | 0.8057           |
| 0.0219        | 35.0  | 350  | 1.0757          | {'precision': 0.7254464285714286, 'recall': 0.8034610630407911, 'f1': 0.7624633431085045, 'number': 809}      | {'precision': 0.43609022556390975, 'recall': 0.48739495798319327, 'f1': 0.46031746031746035, 'number': 119} | {'precision': 0.7964444444444444, 'recall': 0.8413145539906103, 'f1': 0.8182648401826484, 'number': 1065}   | 0.7447            | 0.8048         | 0.7736     | 0.8054           |
| 0.0229        | 36.0  | 360  | 1.1042          | {'precision': 0.7369020501138952, 'recall': 0.799752781211372, 'f1': 0.7670420865441612, 'number': 809}       | {'precision': 0.3584905660377358, 'recall': 0.4789915966386555, 'f1': 0.41007194244604317, 'number': 119}   | {'precision': 0.809040590405904, 'recall': 0.8234741784037559, 'f1': 0.8161935784085622, 'number': 1065}    | 0.7454            | 0.7933         | 0.7686     | 0.8040           |
| 0.0205        | 37.0  | 370  | 1.0980          | {'precision': 0.7352614015572859, 'recall': 0.8170580964153276, 'f1': 0.7740046838407495, 'number': 809}      | {'precision': 0.36423841059602646, 'recall': 0.46218487394957986, 'f1': 0.4074074074074074, 'number': 119}  | {'precision': 0.8087431693989071, 'recall': 0.8338028169014085, 'f1': 0.8210818307905686, 'number': 1065}   | 0.7467            | 0.8048         | 0.7747     | 0.8085           |
| 0.0194        | 38.0  | 380  | 1.0869          | {'precision': 0.740909090909091, 'recall': 0.8059332509270705, 'f1': 0.7720544701006513, 'number': 809}       | {'precision': 0.3972602739726027, 'recall': 0.48739495798319327, 'f1': 0.43773584905660373, 'number': 119}  | {'precision': 0.7982062780269058, 'recall': 0.8356807511737089, 'f1': 0.8165137614678898, 'number': 1065}   | 0.7473            | 0.8028         | 0.7741     | 0.8052           |
| 0.0217        | 39.0  | 390  | 1.0871          | {'precision': 0.7366071428571429, 'recall': 0.8158220024721878, 'f1': 0.7741935483870966, 'number': 809}      | {'precision': 0.39864864864864863, 'recall': 0.4957983193277311, 'f1': 0.44194756554307113, 'number': 119}  | {'precision': 0.8102189781021898, 'recall': 0.8338028169014085, 'f1': 0.8218417399352151, 'number': 1065}   | 0.7509            | 0.8063         | 0.7776     | 0.8078           |
| 0.0186        | 40.0  | 400  | 1.0944          | {'precision': 0.7315436241610739, 'recall': 0.8084054388133498, 'f1': 0.7680563711098063, 'number': 809}      | {'precision': 0.41216216216216217, 'recall': 0.5126050420168067, 'f1': 0.4569288389513108, 'number': 119}   | {'precision': 0.7991031390134529, 'recall': 0.8366197183098592, 'f1': 0.8174311926605504, 'number': 1065}   | 0.7446            | 0.8058         | 0.7740     | 0.8069           |
| 0.0172        | 41.0  | 410  | 1.0907          | {'precision': 0.7425968109339408, 'recall': 0.8059332509270705, 'f1': 0.7729697688203911, 'number': 809}      | {'precision': 0.41843971631205673, 'recall': 0.4957983193277311, 'f1': 0.4538461538461538, 'number': 119}   | {'precision': 0.8132474701011959, 'recall': 0.8300469483568075, 'f1': 0.8215613382899627, 'number': 1065}   | 0.7574            | 0.8003         | 0.7782     | 0.8115           |
| 0.0163        | 42.0  | 420  | 1.1016          | {'precision': 0.7427293064876958, 'recall': 0.8207663782447466, 'f1': 0.7798003523194362, 'number': 809}      | {'precision': 0.3945578231292517, 'recall': 0.48739495798319327, 'f1': 0.43609022556390975, 'number': 119}  | {'precision': 0.8060109289617486, 'recall': 0.8309859154929577, 'f1': 0.8183079056865464, 'number': 1065}   | 0.7513            | 0.8063         | 0.7778     | 0.8099           |
| 0.0165        | 43.0  | 430  | 1.1055          | {'precision': 0.7410714285714286, 'recall': 0.8207663782447466, 'f1': 0.7788856304985337, 'number': 809}      | {'precision': 0.39864864864864863, 'recall': 0.4957983193277311, 'f1': 0.44194756554307113, 'number': 119}  | {'precision': 0.8113553113553114, 'recall': 0.831924882629108, 'f1': 0.8215113583681039, 'number': 1065}    | 0.7533            | 0.8073         | 0.7794     | 0.8090           |
| 0.0157        | 44.0  | 440  | 1.1047          | {'precision': 0.7334826427771557, 'recall': 0.8096415327564895, 'f1': 0.7696827262044654, 'number': 809}      | {'precision': 0.4166666666666667, 'recall': 0.5042016806722689, 'f1': 0.4562737642585551, 'number': 119}    | {'precision': 0.8155963302752294, 'recall': 0.8347417840375587, 'f1': 0.8250580046403712, 'number': 1065}   | 0.7541            | 0.8048         | 0.7786     | 0.8103           |
| 0.0147        | 45.0  | 450  | 1.1064          | {'precision': 0.7329608938547486, 'recall': 0.8108776266996292, 'f1': 0.7699530516431925, 'number': 809}      | {'precision': 0.41216216216216217, 'recall': 0.5126050420168067, 'f1': 0.4569288389513108, 'number': 119}   | {'precision': 0.8107370336669699, 'recall': 0.8366197183098592, 'f1': 0.8234750462107209, 'number': 1065}   | 0.7507            | 0.8068         | 0.7778     | 0.8106           |
| 0.0136        | 46.0  | 460  | 1.1085          | {'precision': 0.7334826427771557, 'recall': 0.8096415327564895, 'f1': 0.7696827262044654, 'number': 809}      | {'precision': 0.4206896551724138, 'recall': 0.5126050420168067, 'f1': 0.46212121212121215, 'number': 119}   | {'precision': 0.8111313868613139, 'recall': 0.8347417840375587, 'f1': 0.822767237390097, 'number': 1065}    | 0.7521            | 0.8053         | 0.7778     | 0.8098           |
| 0.0168        | 47.0  | 470  | 1.1110          | {'precision': 0.7368421052631579, 'recall': 0.8133498145859085, 'f1': 0.7732079905992949, 'number': 809}      | {'precision': 0.41496598639455784, 'recall': 0.5126050420168067, 'f1': 0.4586466165413534, 'number': 119}   | {'precision': 0.810958904109589, 'recall': 0.8338028169014085, 'f1': 0.8222222222222222, 'number': 1065}    | 0.7527            | 0.8063         | 0.7786     | 0.8106           |
| 0.0137        | 48.0  | 480  | 1.1121          | {'precision': 0.7370786516853932, 'recall': 0.8108776266996292, 'f1': 0.7722189523248971, 'number': 809}      | {'precision': 0.39869281045751637, 'recall': 0.5126050420168067, 'f1': 0.4485294117647059, 'number': 119}   | {'precision': 0.8113553113553114, 'recall': 0.831924882629108, 'f1': 0.8215113583681039, 'number': 1065}    | 0.7508            | 0.8043         | 0.7766     | 0.8103           |
| 0.0137        | 49.0  | 490  | 1.1106          | {'precision': 0.7382022471910112, 'recall': 0.8121137206427689, 'f1': 0.7733961153619776, 'number': 809}      | {'precision': 0.4178082191780822, 'recall': 0.5126050420168067, 'f1': 0.460377358490566, 'number': 119}     | {'precision': 0.8143382352941176, 'recall': 0.831924882629108, 'f1': 0.8230376219228982, 'number': 1065}    | 0.7552            | 0.8048         | 0.7792     | 0.8104           |
| 0.0134        | 50.0  | 500  | 1.1105          | {'precision': 0.7390326209223848, 'recall': 0.8121137206427689, 'f1': 0.773851590106007, 'number': 809}       | {'precision': 0.4206896551724138, 'recall': 0.5126050420168067, 'f1': 0.46212121212121215, 'number': 119}   | {'precision': 0.8176795580110497, 'recall': 0.8338028169014085, 'f1': 0.8256624825662483, 'number': 1065}   | 0.7575            | 0.8058         | 0.7809     | 0.8108           |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Tokenizers 0.15.0