vn24 commited on
Commit
de5272a
1 Parent(s): 114d7b1

End of training

Browse files
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: layoutlm-funsd
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # layoutlm-funsd
15
+
16
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.1105
19
+ - Answer: {'precision': 0.7390326209223848, 'recall': 0.8121137206427689, 'f1': 0.773851590106007, 'number': 809}
20
+ - Header: {'precision': 0.4206896551724138, 'recall': 0.5126050420168067, 'f1': 0.46212121212121215, 'number': 119}
21
+ - Question: {'precision': 0.8176795580110497, 'recall': 0.8338028169014085, 'f1': 0.8256624825662483, 'number': 1065}
22
+ - Overall Precision: 0.7575
23
+ - Overall Recall: 0.8058
24
+ - Overall F1: 0.7809
25
+ - Overall Accuracy: 0.8108
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 3e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 50
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.7888 | 1.0 | 10 | 1.5431 | {'precision': 0.023681377825618945, 'recall': 0.027194066749072928, 'f1': 0.02531645569620253, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.23876404494382023, 'recall': 0.1596244131455399, 'f1': 0.19133370849746764, 'number': 1065} | 0.1170 | 0.0963 | 0.1057 | 0.3970 |
58
+ | 1.3827 | 2.0 | 20 | 1.1583 | {'precision': 0.2289156626506024, 'recall': 0.21137206427688504, 'f1': 0.21979434447300772, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.46695652173913044, 'recall': 0.504225352112676, 'f1': 0.48487584650112864, 'number': 1065} | 0.3732 | 0.3552 | 0.3640 | 0.6072 |
59
+ | 1.0226 | 3.0 | 30 | 0.8747 | {'precision': 0.521594684385382, 'recall': 0.5822002472187886, 'f1': 0.5502336448598131, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6095238095238096, 'recall': 0.6610328638497652, 'f1': 0.6342342342342343, 'number': 1065} | 0.5595 | 0.5896 | 0.5742 | 0.7279 |
60
+ | 0.7648 | 4.0 | 40 | 0.7658 | {'precision': 0.5875706214689266, 'recall': 0.7713226205191595, 'f1': 0.667022982362373, 'number': 809} | {'precision': 0.22058823529411764, 'recall': 0.12605042016806722, 'f1': 0.16042780748663102, 'number': 119} | {'precision': 0.6698357821953328, 'recall': 0.7276995305164319, 'f1': 0.6975697569756976, 'number': 1065} | 0.6183 | 0.7095 | 0.6607 | 0.7635 |
61
+ | 0.6327 | 5.0 | 50 | 0.6972 | {'precision': 0.6389473684210526, 'recall': 0.7503090234857849, 'f1': 0.6901648664013643, 'number': 809} | {'precision': 0.3448275862068966, 'recall': 0.16806722689075632, 'f1': 0.22598870056497172, 'number': 119} | {'precision': 0.7047619047619048, 'recall': 0.7643192488262911, 'f1': 0.7333333333333334, 'number': 1065} | 0.6662 | 0.7230 | 0.6935 | 0.7853 |
62
+ | 0.5253 | 6.0 | 60 | 0.6675 | {'precision': 0.667027027027027, 'recall': 0.7626699629171817, 'f1': 0.7116493656286043, 'number': 809} | {'precision': 0.2248062015503876, 'recall': 0.24369747899159663, 'f1': 0.2338709677419355, 'number': 119} | {'precision': 0.6939586645468998, 'recall': 0.819718309859155, 'f1': 0.751614291863969, 'number': 1065} | 0.6570 | 0.7622 | 0.7057 | 0.7984 |
63
+ | 0.4339 | 7.0 | 70 | 0.6615 | {'precision': 0.7005524861878453, 'recall': 0.7836835599505563, 'f1': 0.7397899649941657, 'number': 809} | {'precision': 0.24342105263157895, 'recall': 0.31092436974789917, 'f1': 0.27306273062730624, 'number': 119} | {'precision': 0.7237386269644334, 'recall': 0.8215962441314554, 'f1': 0.7695690413368513, 'number': 1065} | 0.6823 | 0.7757 | 0.7260 | 0.8022 |
64
+ | 0.3775 | 8.0 | 80 | 0.6598 | {'precision': 0.7138009049773756, 'recall': 0.7799752781211372, 'f1': 0.7454223272297696, 'number': 809} | {'precision': 0.27007299270072993, 'recall': 0.31092436974789917, 'f1': 0.2890625, 'number': 119} | {'precision': 0.7389491242702252, 'recall': 0.831924882629108, 'f1': 0.7826855123674912, 'number': 1065} | 0.7 | 0.7797 | 0.7377 | 0.8078 |
65
+ | 0.3219 | 9.0 | 90 | 0.6811 | {'precision': 0.7013422818791947, 'recall': 0.7750309023485785, 'f1': 0.7363476218438051, 'number': 809} | {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119} | {'precision': 0.7541268462206777, 'recall': 0.8150234741784037, 'f1': 0.7833935018050542, 'number': 1065} | 0.7061 | 0.7692 | 0.7363 | 0.8004 |
66
+ | 0.2732 | 10.0 | 100 | 0.6725 | {'precision': 0.7259668508287292, 'recall': 0.8121137206427689, 'f1': 0.766627771295216, 'number': 809} | {'precision': 0.3053435114503817, 'recall': 0.33613445378151263, 'f1': 0.32000000000000006, 'number': 119} | {'precision': 0.7798573975044564, 'recall': 0.8215962441314554, 'f1': 0.800182898948331, 'number': 1065} | 0.7285 | 0.7888 | 0.7574 | 0.8113 |
67
+ | 0.2275 | 11.0 | 110 | 0.7076 | {'precision': 0.7237569060773481, 'recall': 0.8096415327564895, 'f1': 0.764294049008168, 'number': 809} | {'precision': 0.3381294964028777, 'recall': 0.3949579831932773, 'f1': 0.3643410852713178, 'number': 119} | {'precision': 0.7820284697508897, 'recall': 0.8253521126760563, 'f1': 0.8031064412973961, 'number': 1065} | 0.7292 | 0.7933 | 0.7599 | 0.8109 |
68
+ | 0.195 | 12.0 | 120 | 0.7281 | {'precision': 0.7301231802911534, 'recall': 0.8059332509270705, 'f1': 0.7661574618096357, 'number': 809} | {'precision': 0.3141025641025641, 'recall': 0.4117647058823529, 'f1': 0.3563636363636363, 'number': 119} | {'precision': 0.7923497267759563, 'recall': 0.8169014084507042, 'f1': 0.8044382801664355, 'number': 1065} | 0.7317 | 0.7883 | 0.7589 | 0.8085 |
69
+ | 0.1765 | 13.0 | 130 | 0.7390 | {'precision': 0.7318181818181818, 'recall': 0.796044499381953, 'f1': 0.7625814091178211, 'number': 809} | {'precision': 0.358974358974359, 'recall': 0.47058823529411764, 'f1': 0.40727272727272734, 'number': 119} | {'precision': 0.781195079086116, 'recall': 0.8347417840375587, 'f1': 0.8070812528370404, 'number': 1065} | 0.7309 | 0.7973 | 0.7627 | 0.8164 |
70
+ | 0.1463 | 14.0 | 140 | 0.7731 | {'precision': 0.7437923250564334, 'recall': 0.8145859085290482, 'f1': 0.7775811209439528, 'number': 809} | {'precision': 0.3368421052631579, 'recall': 0.5378151260504201, 'f1': 0.4142394822006472, 'number': 119} | {'precision': 0.7963800904977375, 'recall': 0.8262910798122066, 'f1': 0.8110599078341013, 'number': 1065} | 0.7350 | 0.8043 | 0.7681 | 0.8163 |
71
+ | 0.1292 | 15.0 | 150 | 0.7745 | {'precision': 0.738933030646992, 'recall': 0.8046971569839307, 'f1': 0.770414201183432, 'number': 809} | {'precision': 0.3719512195121951, 'recall': 0.5126050420168067, 'f1': 0.431095406360424, 'number': 119} | {'precision': 0.7852650494159928, 'recall': 0.8206572769953052, 'f1': 0.8025711662075299, 'number': 1065} | 0.7349 | 0.7958 | 0.7642 | 0.8111 |
72
+ | 0.1209 | 16.0 | 160 | 0.8221 | {'precision': 0.7181719260065288, 'recall': 0.8158220024721878, 'f1': 0.7638888888888888, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.4789915966386555, 'f1': 0.393103448275862, 'number': 119} | {'precision': 0.7963302752293578, 'recall': 0.8150234741784037, 'f1': 0.805568445475638, 'number': 1065} | 0.7271 | 0.7953 | 0.7596 | 0.8063 |
73
+ | 0.1095 | 17.0 | 170 | 0.8437 | {'precision': 0.7384441939120632, 'recall': 0.8096415327564895, 'f1': 0.7724056603773586, 'number': 809} | {'precision': 0.3673469387755102, 'recall': 0.453781512605042, 'f1': 0.406015037593985, 'number': 119} | {'precision': 0.7715030408340573, 'recall': 0.8338028169014085, 'f1': 0.8014440433212997, 'number': 1065} | 0.7309 | 0.8013 | 0.7645 | 0.8098 |
74
+ | 0.0888 | 18.0 | 180 | 0.8539 | {'precision': 0.7426556991774383, 'recall': 0.7812113720642769, 'f1': 0.7614457831325301, 'number': 809} | {'precision': 0.3716216216216216, 'recall': 0.46218487394957986, 'f1': 0.41198501872659177, 'number': 119} | {'precision': 0.784070796460177, 'recall': 0.831924882629108, 'f1': 0.8072892938496583, 'number': 1065} | 0.7388 | 0.7893 | 0.7632 | 0.8063 |
75
+ | 0.0796 | 19.0 | 190 | 0.8697 | {'precision': 0.7249154453213078, 'recall': 0.7948084054388134, 'f1': 0.7582547169811321, 'number': 809} | {'precision': 0.39416058394160586, 'recall': 0.453781512605042, 'f1': 0.421875, 'number': 119} | {'precision': 0.7835232252410167, 'recall': 0.8394366197183099, 'f1': 0.8105167724388033, 'number': 1065} | 0.7349 | 0.7983 | 0.7653 | 0.8091 |
76
+ | 0.0747 | 20.0 | 200 | 0.9098 | {'precision': 0.7414965986394558, 'recall': 0.8084054388133498, 'f1': 0.7735068007096393, 'number': 809} | {'precision': 0.33695652173913043, 'recall': 0.5210084033613446, 'f1': 0.40924092409240925, 'number': 119} | {'precision': 0.8124419684308264, 'recall': 0.8215962441314554, 'f1': 0.8169934640522875, 'number': 1065} | 0.7424 | 0.7983 | 0.7693 | 0.8074 |
77
+ | 0.0654 | 21.0 | 210 | 0.9180 | {'precision': 0.7411225658648339, 'recall': 0.799752781211372, 'f1': 0.7693222354340071, 'number': 809} | {'precision': 0.3905325443786982, 'recall': 0.5546218487394958, 'f1': 0.4583333333333333, 'number': 119} | {'precision': 0.8036866359447005, 'recall': 0.8187793427230047, 'f1': 0.8111627906976744, 'number': 1065} | 0.7452 | 0.7953 | 0.7694 | 0.8082 |
78
+ | 0.0545 | 22.0 | 220 | 0.9456 | {'precision': 0.7479768786127168, 'recall': 0.799752781211372, 'f1': 0.7729988052568698, 'number': 809} | {'precision': 0.34502923976608185, 'recall': 0.4957983193277311, 'f1': 0.4068965517241379, 'number': 119} | {'precision': 0.7932910244786945, 'recall': 0.8215962441314554, 'f1': 0.8071955719557196, 'number': 1065} | 0.7391 | 0.7933 | 0.7652 | 0.8064 |
79
+ | 0.0526 | 23.0 | 230 | 0.9552 | {'precision': 0.7383720930232558, 'recall': 0.7849196538936959, 'f1': 0.7609346914319952, 'number': 809} | {'precision': 0.36075949367088606, 'recall': 0.4789915966386555, 'f1': 0.41155234657039713, 'number': 119} | {'precision': 0.7947794779477948, 'recall': 0.8291079812206573, 'f1': 0.8115808823529413, 'number': 1065} | 0.7398 | 0.7903 | 0.7642 | 0.8048 |
80
+ | 0.0465 | 24.0 | 240 | 0.9799 | {'precision': 0.7411111111111112, 'recall': 0.8244746600741656, 'f1': 0.780573434757168, 'number': 809} | {'precision': 0.44274809160305345, 'recall': 0.48739495798319327, 'f1': 0.464, 'number': 119} | {'precision': 0.7863475177304965, 'recall': 0.8328638497652582, 'f1': 0.8089375284997721, 'number': 1065} | 0.7466 | 0.8088 | 0.7765 | 0.8082 |
81
+ | 0.0402 | 25.0 | 250 | 0.9705 | {'precision': 0.7559591373439274, 'recall': 0.823238566131026, 'f1': 0.7881656804733728, 'number': 809} | {'precision': 0.40559440559440557, 'recall': 0.48739495798319327, 'f1': 0.4427480916030534, 'number': 119} | {'precision': 0.785204991087344, 'recall': 0.8272300469483568, 'f1': 0.8056698673982624, 'number': 1065} | 0.7479 | 0.8053 | 0.7755 | 0.8091 |
82
+ | 0.0426 | 26.0 | 260 | 0.9772 | {'precision': 0.7350917431192661, 'recall': 0.792336217552534, 'f1': 0.7626412849494348, 'number': 809} | {'precision': 0.40816326530612246, 'recall': 0.5042016806722689, 'f1': 0.45112781954887216, 'number': 119} | {'precision': 0.8149498632634458, 'recall': 0.8394366197183099, 'f1': 0.8270120259019426, 'number': 1065} | 0.7538 | 0.8003 | 0.7763 | 0.8103 |
83
+ | 0.0377 | 27.0 | 270 | 0.9820 | {'precision': 0.7414965986394558, 'recall': 0.8084054388133498, 'f1': 0.7735068007096393, 'number': 809} | {'precision': 0.4405594405594406, 'recall': 0.5294117647058824, 'f1': 0.48091603053435117, 'number': 119} | {'precision': 0.8223866790009251, 'recall': 0.8347417840375587, 'f1': 0.8285181733457596, 'number': 1065} | 0.7626 | 0.8058 | 0.7836 | 0.8106 |
84
+ | 0.031 | 28.0 | 280 | 1.0041 | {'precision': 0.734717416378316, 'recall': 0.7873918417799752, 'f1': 0.7601431980906921, 'number': 809} | {'precision': 0.4064516129032258, 'recall': 0.5294117647058824, 'f1': 0.4598540145985402, 'number': 119} | {'precision': 0.8052064631956912, 'recall': 0.8422535211267606, 'f1': 0.8233134465351079, 'number': 1065} | 0.7477 | 0.8013 | 0.7736 | 0.8075 |
85
+ | 0.0322 | 29.0 | 290 | 1.0408 | {'precision': 0.7292817679558011, 'recall': 0.8158220024721878, 'f1': 0.7701283547257876, 'number': 809} | {'precision': 0.4027777777777778, 'recall': 0.48739495798319327, 'f1': 0.44106463878326996, 'number': 119} | {'precision': 0.8104693140794224, 'recall': 0.8431924882629108, 'f1': 0.8265071329958583, 'number': 1065} | 0.7492 | 0.8108 | 0.7788 | 0.8062 |
86
+ | 0.0292 | 30.0 | 300 | 1.0359 | {'precision': 0.7351598173515982, 'recall': 0.796044499381953, 'f1': 0.7643916913946588, 'number': 809} | {'precision': 0.3727810650887574, 'recall': 0.5294117647058824, 'f1': 0.4375, 'number': 119} | {'precision': 0.8218283582089553, 'recall': 0.8272300469483568, 'f1': 0.8245203556387459, 'number': 1065} | 0.7501 | 0.7968 | 0.7727 | 0.8045 |
87
+ | 0.0259 | 31.0 | 310 | 1.0452 | {'precision': 0.7275784753363229, 'recall': 0.8022249690976514, 'f1': 0.7630805408583187, 'number': 809} | {'precision': 0.41732283464566927, 'recall': 0.44537815126050423, 'f1': 0.43089430894308944, 'number': 119} | {'precision': 0.8238532110091743, 'recall': 0.8431924882629108, 'f1': 0.8334106728538283, 'number': 1065} | 0.7587 | 0.8028 | 0.7801 | 0.8082 |
88
+ | 0.0268 | 32.0 | 320 | 1.0653 | {'precision': 0.7338618346545867, 'recall': 0.8009888751545118, 'f1': 0.7659574468085106, 'number': 809} | {'precision': 0.39473684210526316, 'recall': 0.5042016806722689, 'f1': 0.4428044280442805, 'number': 119} | {'precision': 0.7909252669039146, 'recall': 0.8347417840375587, 'f1': 0.8122430333485611, 'number': 1065} | 0.7397 | 0.8013 | 0.7693 | 0.8040 |
89
+ | 0.0258 | 33.0 | 330 | 1.0603 | {'precision': 0.7429537767756482, 'recall': 0.8145859085290482, 'f1': 0.777122641509434, 'number': 809} | {'precision': 0.3885350318471338, 'recall': 0.5126050420168067, 'f1': 0.4420289855072464, 'number': 119} | {'precision': 0.7969314079422383, 'recall': 0.8291079812206573, 'f1': 0.8127013345605153, 'number': 1065} | 0.7449 | 0.8043 | 0.7735 | 0.8077 |
90
+ | 0.0236 | 34.0 | 340 | 1.0683 | {'precision': 0.7353951890034365, 'recall': 0.7935723114956736, 'f1': 0.7633769322235434, 'number': 809} | {'precision': 0.36470588235294116, 'recall': 0.5210084033613446, 'f1': 0.4290657439446367, 'number': 119} | {'precision': 0.8066298342541437, 'recall': 0.8225352112676056, 'f1': 0.814504881450488, 'number': 1065} | 0.7421 | 0.7928 | 0.7666 | 0.8057 |
91
+ | 0.0219 | 35.0 | 350 | 1.0757 | {'precision': 0.7254464285714286, 'recall': 0.8034610630407911, 'f1': 0.7624633431085045, 'number': 809} | {'precision': 0.43609022556390975, 'recall': 0.48739495798319327, 'f1': 0.46031746031746035, 'number': 119} | {'precision': 0.7964444444444444, 'recall': 0.8413145539906103, 'f1': 0.8182648401826484, 'number': 1065} | 0.7447 | 0.8048 | 0.7736 | 0.8054 |
92
+ | 0.0229 | 36.0 | 360 | 1.1042 | {'precision': 0.7369020501138952, 'recall': 0.799752781211372, 'f1': 0.7670420865441612, 'number': 809} | {'precision': 0.3584905660377358, 'recall': 0.4789915966386555, 'f1': 0.41007194244604317, 'number': 119} | {'precision': 0.809040590405904, 'recall': 0.8234741784037559, 'f1': 0.8161935784085622, 'number': 1065} | 0.7454 | 0.7933 | 0.7686 | 0.8040 |
93
+ | 0.0205 | 37.0 | 370 | 1.0980 | {'precision': 0.7352614015572859, 'recall': 0.8170580964153276, 'f1': 0.7740046838407495, 'number': 809} | {'precision': 0.36423841059602646, 'recall': 0.46218487394957986, 'f1': 0.4074074074074074, 'number': 119} | {'precision': 0.8087431693989071, 'recall': 0.8338028169014085, 'f1': 0.8210818307905686, 'number': 1065} | 0.7467 | 0.8048 | 0.7747 | 0.8085 |
94
+ | 0.0194 | 38.0 | 380 | 1.0869 | {'precision': 0.740909090909091, 'recall': 0.8059332509270705, 'f1': 0.7720544701006513, 'number': 809} | {'precision': 0.3972602739726027, 'recall': 0.48739495798319327, 'f1': 0.43773584905660373, 'number': 119} | {'precision': 0.7982062780269058, 'recall': 0.8356807511737089, 'f1': 0.8165137614678898, 'number': 1065} | 0.7473 | 0.8028 | 0.7741 | 0.8052 |
95
+ | 0.0217 | 39.0 | 390 | 1.0871 | {'precision': 0.7366071428571429, 'recall': 0.8158220024721878, 'f1': 0.7741935483870966, 'number': 809} | {'precision': 0.39864864864864863, 'recall': 0.4957983193277311, 'f1': 0.44194756554307113, 'number': 119} | {'precision': 0.8102189781021898, 'recall': 0.8338028169014085, 'f1': 0.8218417399352151, 'number': 1065} | 0.7509 | 0.8063 | 0.7776 | 0.8078 |
96
+ | 0.0186 | 40.0 | 400 | 1.0944 | {'precision': 0.7315436241610739, 'recall': 0.8084054388133498, 'f1': 0.7680563711098063, 'number': 809} | {'precision': 0.41216216216216217, 'recall': 0.5126050420168067, 'f1': 0.4569288389513108, 'number': 119} | {'precision': 0.7991031390134529, 'recall': 0.8366197183098592, 'f1': 0.8174311926605504, 'number': 1065} | 0.7446 | 0.8058 | 0.7740 | 0.8069 |
97
+ | 0.0172 | 41.0 | 410 | 1.0907 | {'precision': 0.7425968109339408, 'recall': 0.8059332509270705, 'f1': 0.7729697688203911, 'number': 809} | {'precision': 0.41843971631205673, 'recall': 0.4957983193277311, 'f1': 0.4538461538461538, 'number': 119} | {'precision': 0.8132474701011959, 'recall': 0.8300469483568075, 'f1': 0.8215613382899627, 'number': 1065} | 0.7574 | 0.8003 | 0.7782 | 0.8115 |
98
+ | 0.0163 | 42.0 | 420 | 1.1016 | {'precision': 0.7427293064876958, 'recall': 0.8207663782447466, 'f1': 0.7798003523194362, 'number': 809} | {'precision': 0.3945578231292517, 'recall': 0.48739495798319327, 'f1': 0.43609022556390975, 'number': 119} | {'precision': 0.8060109289617486, 'recall': 0.8309859154929577, 'f1': 0.8183079056865464, 'number': 1065} | 0.7513 | 0.8063 | 0.7778 | 0.8099 |
99
+ | 0.0165 | 43.0 | 430 | 1.1055 | {'precision': 0.7410714285714286, 'recall': 0.8207663782447466, 'f1': 0.7788856304985337, 'number': 809} | {'precision': 0.39864864864864863, 'recall': 0.4957983193277311, 'f1': 0.44194756554307113, 'number': 119} | {'precision': 0.8113553113553114, 'recall': 0.831924882629108, 'f1': 0.8215113583681039, 'number': 1065} | 0.7533 | 0.8073 | 0.7794 | 0.8090 |
100
+ | 0.0157 | 44.0 | 440 | 1.1047 | {'precision': 0.7334826427771557, 'recall': 0.8096415327564895, 'f1': 0.7696827262044654, 'number': 809} | {'precision': 0.4166666666666667, 'recall': 0.5042016806722689, 'f1': 0.4562737642585551, 'number': 119} | {'precision': 0.8155963302752294, 'recall': 0.8347417840375587, 'f1': 0.8250580046403712, 'number': 1065} | 0.7541 | 0.8048 | 0.7786 | 0.8103 |
101
+ | 0.0147 | 45.0 | 450 | 1.1064 | {'precision': 0.7329608938547486, 'recall': 0.8108776266996292, 'f1': 0.7699530516431925, 'number': 809} | {'precision': 0.41216216216216217, 'recall': 0.5126050420168067, 'f1': 0.4569288389513108, 'number': 119} | {'precision': 0.8107370336669699, 'recall': 0.8366197183098592, 'f1': 0.8234750462107209, 'number': 1065} | 0.7507 | 0.8068 | 0.7778 | 0.8106 |
102
+ | 0.0136 | 46.0 | 460 | 1.1085 | {'precision': 0.7334826427771557, 'recall': 0.8096415327564895, 'f1': 0.7696827262044654, 'number': 809} | {'precision': 0.4206896551724138, 'recall': 0.5126050420168067, 'f1': 0.46212121212121215, 'number': 119} | {'precision': 0.8111313868613139, 'recall': 0.8347417840375587, 'f1': 0.822767237390097, 'number': 1065} | 0.7521 | 0.8053 | 0.7778 | 0.8098 |
103
+ | 0.0168 | 47.0 | 470 | 1.1110 | {'precision': 0.7368421052631579, 'recall': 0.8133498145859085, 'f1': 0.7732079905992949, 'number': 809} | {'precision': 0.41496598639455784, 'recall': 0.5126050420168067, 'f1': 0.4586466165413534, 'number': 119} | {'precision': 0.810958904109589, 'recall': 0.8338028169014085, 'f1': 0.8222222222222222, 'number': 1065} | 0.7527 | 0.8063 | 0.7786 | 0.8106 |
104
+ | 0.0137 | 48.0 | 480 | 1.1121 | {'precision': 0.7370786516853932, 'recall': 0.8108776266996292, 'f1': 0.7722189523248971, 'number': 809} | {'precision': 0.39869281045751637, 'recall': 0.5126050420168067, 'f1': 0.4485294117647059, 'number': 119} | {'precision': 0.8113553113553114, 'recall': 0.831924882629108, 'f1': 0.8215113583681039, 'number': 1065} | 0.7508 | 0.8043 | 0.7766 | 0.8103 |
105
+ | 0.0137 | 49.0 | 490 | 1.1106 | {'precision': 0.7382022471910112, 'recall': 0.8121137206427689, 'f1': 0.7733961153619776, 'number': 809} | {'precision': 0.4178082191780822, 'recall': 0.5126050420168067, 'f1': 0.460377358490566, 'number': 119} | {'precision': 0.8143382352941176, 'recall': 0.831924882629108, 'f1': 0.8230376219228982, 'number': 1065} | 0.7552 | 0.8048 | 0.7792 | 0.8104 |
106
+ | 0.0134 | 50.0 | 500 | 1.1105 | {'precision': 0.7390326209223848, 'recall': 0.8121137206427689, 'f1': 0.773851590106007, 'number': 809} | {'precision': 0.4206896551724138, 'recall': 0.5126050420168067, 'f1': 0.46212121212121215, 'number': 119} | {'precision': 0.8176795580110497, 'recall': 0.8338028169014085, 'f1': 0.8256624825662483, 'number': 1065} | 0.7575 | 0.8058 | 0.7809 | 0.8108 |
107
+
108
+
109
+ ### Framework versions
110
+
111
+ - Transformers 4.35.2
112
+ - Pytorch 2.1.0+cu121
113
+ - Tokenizers 0.15.0
logs/events.out.tfevents.1705312461.49453ba0d166.795.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9da051a3007ee86bfb81ceb58c864b19b2e9728e56ba54f8a23910bc6e405579
3
- size 36708
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9b70f91ebf3c0077538b616db43123e5fa2e4a7150c947f516f50994ac97b3e
3
+ size 37723
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f27d85230911b9e75c085fb0e96fc5adf9f2320610dc4a9ad2d848bc3e2b7eb4
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a26537ecf7392a6d296671f1ddb3402b79e661097d15e1c4a72276fc0e354442
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff