vimalgupta's picture
update model card README.md
537c0b8
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - cord-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord_vimal
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cord-layoutlmv3
          type: cord-layoutlmv3
          config: cord
          split: test
          args: cord
        metrics:
          - name: Precision
            type: precision
            value: 0.717948717948718
          - name: Recall
            type: recall
            value: 0.7368421052631579
          - name: F1
            type: f1
            value: 0.7272727272727273
          - name: Accuracy
            type: accuracy
            value: 0.7333333333333333

layoutlmv3-finetuned-cord_vimal

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8321
  • Precision: 0.7179
  • Recall: 0.7368
  • F1: 0.7273
  • Accuracy: 0.7333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 125.0 250 1.2027 0.7564 0.7763 0.7662 0.7481
0.8449 250.0 500 1.3990 0.7089 0.7368 0.7226 0.7333
0.8449 375.0 750 1.5343 0.7179 0.7368 0.7273 0.7333
0.0296 500.0 1000 1.6144 0.75 0.75 0.75 0.7407
0.0296 625.0 1250 1.6898 0.7179 0.7368 0.7273 0.7333
0.0134 750.0 1500 1.7402 0.7179 0.7368 0.7273 0.7333
0.0134 875.0 1750 1.7888 0.7179 0.7368 0.7273 0.7333
0.0089 1000.0 2000 1.8041 0.7179 0.7368 0.7273 0.7333
0.0089 1125.0 2250 1.8209 0.7179 0.7368 0.7273 0.7333
0.0073 1250.0 2500 1.8321 0.7179 0.7368 0.7273 0.7333

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2