tyty979812's picture
Upload tokenizer
1bd33e3 verified
metadata
language:
  - multilingual
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
base_model: openai/whisper-large-v3
model-index:
  - name: Whisper large-v3 nan-tw
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 16.0
          type: mozilla-foundation/common_voice_16_0
          config: nan-tw
          split: test
          args: 'config: nan-tw, split: test'
        metrics:
          - type: wer
            value: 280.9248554913295
            name: Wer

Whisper large-v3 nan-tw

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0601
  • Wer: 280.9249

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2485 3.05 1000 0.9971 538.5505
0.0154 6.1 2000 1.0482 1460.5158
0.0024 9.15 3000 1.0330 261.3161
0.0014 12.2 4000 1.0554 300.3112
0.0003 15.24 5000 1.0601 280.9249

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1