arc-heavy-llama3.1-8b-lora64-testtime-finetuning
This model is a fine-tuned version of barc0/Llama-3.1-ARC-Heavy-Transduction-8B on the tttx/test-ttft, the barc0/transduction_formatted_rearc_dataset_100k and the barc0/transduction_heavy_100k_jsonl datasets. It achieves the following results on the evaluation set:
- Loss: 0.0401
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0373 | 1.0 | 667 | 0.0589 |
0.0344 | 2.0 | 1334 | 0.0550 |
0.009 | 3.0 | 2001 | 0.0401 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 16
Model tree for tttx/arc-heavy-llama3.1-8b-lora64-testtime-finetuning
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct