Edit model card

mistralit2_1000_STEPS_1e5_rate_0.1_beta_DPO

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9939
  • Rewards/chosen: -3.9532
  • Rewards/rejected: -5.6547
  • Rewards/accuracies: 0.6000
  • Rewards/margins: 1.7015
  • Logps/rejected: -85.1197
  • Logps/chosen: -62.9180
  • Logits/rejected: -2.0229
  • Logits/chosen: -2.0243

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6073 0.1 50 0.6623 -1.2716 -1.5743 0.5736 0.3026 -44.3150 -36.1020 -2.8014 -2.8019
0.7223 0.2 100 0.7934 -3.0203 -3.2538 0.5077 0.2336 -61.1108 -53.5883 -2.4237 -2.4243
0.8563 0.29 150 0.7580 -1.8675 -2.3470 0.5604 0.4795 -52.0427 -42.0607 -2.5521 -2.5529
0.7701 0.39 200 0.7631 -1.8702 -2.1583 0.5231 0.2882 -50.1556 -42.0875 -2.7052 -2.7056
0.8749 0.49 250 0.7941 -2.4787 -2.6066 0.4879 0.1279 -54.6385 -48.1731 -2.8184 -2.8189
0.6954 0.59 300 0.8039 -1.5721 -1.9872 0.5473 0.4151 -48.4439 -39.1064 -2.8263 -2.8268
0.733 0.68 350 0.7751 -0.5753 -1.0891 0.5253 0.5138 -39.4632 -29.1387 -2.7587 -2.7591
0.8256 0.78 400 0.7376 -1.2950 -1.7911 0.5516 0.4962 -46.4838 -36.3354 -2.9702 -2.9707
0.6485 0.88 450 0.7344 -1.7798 -2.3960 0.5692 0.6162 -52.5322 -41.1838 -2.7167 -2.7174
0.612 0.98 500 0.7051 -1.3500 -2.0968 0.5978 0.7467 -49.5400 -36.8863 -2.5131 -2.5138
0.2108 1.07 550 0.7799 -2.0131 -3.4580 0.6418 1.4449 -63.1524 -43.5171 -2.2469 -2.2482
0.1378 1.17 600 0.9314 -3.4717 -5.1214 0.6198 1.6497 -79.7863 -58.1027 -1.9917 -1.9933
0.188 1.27 650 0.9857 -3.6647 -5.3449 0.6198 1.6803 -82.0219 -60.0328 -1.9585 -1.9601
0.3739 1.37 700 1.0046 -3.6506 -5.3352 0.6176 1.6846 -81.9245 -59.8915 -2.0334 -2.0349
0.0428 1.46 750 0.9881 -3.8094 -5.4955 0.6088 1.6861 -83.5278 -61.4803 -2.0272 -2.0287
0.131 1.56 800 0.9900 -3.9653 -5.6306 0.6022 1.6653 -84.8782 -63.0390 -2.0228 -2.0242
0.1558 1.66 850 0.9943 -3.9735 -5.6628 0.6000 1.6893 -85.2000 -63.1207 -2.0177 -2.0191
0.1876 1.76 900 0.9939 -3.9576 -5.6566 0.6000 1.6989 -85.1381 -62.9622 -2.0227 -2.0241
0.1415 1.86 950 0.9945 -3.9552 -5.6536 0.6022 1.6984 -85.1084 -62.9377 -2.0232 -2.0246
0.1163 1.95 1000 0.9939 -3.9532 -5.6547 0.6000 1.7015 -85.1197 -62.9180 -2.0229 -2.0243

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.0.0+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
2
Safetensors
Model size
7.24B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tsavage68/mistralit2_1000_STEPS_1e6_rate_0.1_beta_DPO

Finetuned
(366)
this model