metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9174193548387096
distilbert-base-uncased-finetuned-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. The model is used in Chapter 8: Making Transformers Efficient in Production in the NLP with Transformers book. You can find the full code in the accompanying Github repository.
It achieves the following results on the evaluation set:
- Loss: 0.7773
- Accuracy: 0.9174
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
4.2923 | 1.0 | 318 | 3.2893 | 0.7423 |
2.6307 | 2.0 | 636 | 1.8837 | 0.8281 |
1.5483 | 3.0 | 954 | 1.1583 | 0.8968 |
1.0153 | 4.0 | 1272 | 0.8618 | 0.9094 |
0.7958 | 5.0 | 1590 | 0.7773 | 0.9174 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1+cu102
- Datasets 1.13.0
- Tokenizers 0.10.3