Pretrained LM
- beomi/Llama-3-Open-Ko-8B (MIT License)
Training Dataset
- traintogpb/aihub-mmt-integrated-prime-base-300k
- Can translate in Korean <-> English / Japanese / Chinese (Korean-centered translation)
Prompt
Template:
# one of 'src_lang' and 'tgt_lang' should be "ํ๊ตญ์ด" src_lang = "English" # English, ํ๊ตญ์ด, ๆฅๆฌ่ช, ไธญๆ tgt_lang = "ํ๊ตญ์ด" # English, ํ๊ตญ์ด, ๆฅๆฌ่ช, ไธญๆ text = "New era, same empire. T1 is your 2024 Worlds champion!" # task part task_xml_dict = { 'head': "<task>", 'body': f"Translate the source sentence from {src_lang} to {tgt_lang}.\nBe sure to reflect the guidelines below when translating.", 'tail': "</task>" } task = f"{task_xml_dict['head']}\n{task_xml_dict['body']}\n{task_xml_dict['tail']}" # instruction part instruction_xml_dict = { 'head': "<instruction>", 'body': ["Translate without any condition."], 'tail': "</instruction>" } instruction_xml_body = '\n'.join([f'- {body}' for body in instruction_xml_dict['body']]) instruction = f"{instruction_xml_dict['head']}\n{instruction_xml_body}\n{instruction_xml_dict['tail']}" # translation part src_xml_dict = { 'head': f"<source><{src_lang}>", 'body': text.strip(), 'tail': f"</{src_lang}></source>" } tgt_xml_dict = { 'head': f"<target><{tgt_lang}>", } src = f"{src_xml_dict['head']}\n{src_xml_dict['body']}\n{src_xml_dict['tail']}" tgt = f"{tgt_xml_dict['head']}\n" translation_xml_dict = { 'head': "<translation>", 'body': f"{src}\n{tgt}", } translation = f"{translation_xml_dict['head']}\n{translation_xml_dict['body']}" # final prompt prompt = f"{task}\n\n{instruction}\n\n{translation}"
Example Input:
<task> Translate the source sentence from English to ํ๊ตญ์ด. Be sure to reflect the guidelines below when translating. </task> <instruction> - Translate without any condition. </instruction> <translation> <source><English> New era, same empire. T1 is your 2024 Worlds champion! </English></source> <target><ํ๊ตญ์ด>
Expected Output:
์๋ก์ด ์๋, ์ฌ์ ํ ์์กฐ. ํฐ์์ด 2024 ์์ฆ์ ์ฑํผ์ธ์ ๋๋ค! </ํ๊ตญ์ด></target> </translation>
Model will generate the XML end tags.
Training
- Trained with LoRA adapter
- PLM: bfloat16
- Adapter: bfloat16
- Adapted to all the linear layers (around 2.05%)
Usage (IMPORTANT)
- Should remove the EOS token at the end of the prompt.
# MODEL model_name = 'beomi/Llama-3-Open-Ko-8B' adapter_name = 'traintogpb/llama-3-mmt-xml-it-sft-adapter' model = AutoModelForCausalLM.from_pretrained( model_name, max_length=4096, attn_implementation='flash_attention_2', torch_dtype=torch.bfloat16, ) model = PeftModel.from_pretrained( model, adapter_path=adapter_name, torch_dtype=torch.bfloat16, ) tokenizer = AutoTokenizer.from_pretrained(adapter_name) tokenizer.pad_token_id = 128002 # eos_token_id and pad_token_id should be different text = "New era, same empire. T1 is your 2024 Worlds champion!" input_prompt = "<task> ~ <target><{tgt_lang}>" # prompt with the template above inputs = tokenizer(input_prompt, max_length=2000, truncation=True, return_tensors='pt') if inputs['input_ids'][0][-1] == tokenizer.eos_token_id: inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0) inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0) outputs = model.generate(**inputs, max_length=2000, eos_token_id=tokenizer.eos_token_id) input_len = len(inputs['input_ids'].squeeze()) translation = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True) print(translation)
Framework versions
- PEFT 0.8.2
- Downloads last month
- 4
Inference API (serverless) does not yet support peft models for this pipeline type.
Model tree for traintogpb/llama-3-mmt-xml-it-sft-adapter
Base model
beomi/Llama-3-Open-Ko-8B