LLaMA Translator
Collection
18 items
•
Updated
•
1
prompt = f"Translate this from {src_lang} to {tgt_lang}\n### {src_lang}: {src_text}\n### {tgt_lang}: "
>>> # src_lang can be 'English', '한국어'
>>> # tgt_lang can be '한국어', 'English'
Mind that there is a "space (_
)" at the end of the prompt (unpredictable first token will be popped up).
But if you use vLLM, it's okay to remove the final space(_
). # MODEL
model_name = 'beomi/Llama-3-Open-Ko-8B'
adapter_name = 'traintogpb/llama-3-enko-translator-8b-qlora-adapter'
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
max_length=768,
quantization_config=bnb_config,
attn_implementation='flash_attention_2',
torch_dtype=torch.bfloat16,
)
model = PeftModel.from_pretrained(
model,
adapter_path=adapter_name,
torch_dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained(adapter_name)
tokenizer.pad_token_id = 128002 # eos_token_id and pad_token_id should be different
text = "Someday, QWER will be the greatest girl band in the world."
input_prompt = f"Translate this from English to 한국어.\n### English: {text}\n### 한국어:"
inputs = tokenizer(input_prompt, max_length=768, truncation=True, return_tensors='pt')
if inputs['input_ids'][0][-1] == tokenizer.eos_token_id:
inputs['input_ids'] = inputs['input_ids'][0][:-1].unsqueeze(dim=0)
inputs['attention_mask'] = inputs['attention_mask'][0][:-1].unsqueeze(dim=0)
outputs = model.generate(**inputs, max_length=768, eos_token_id=tokenizer.eos_token_id)
input_len = len(inputs['input_ids'].squeeze())
translation = tokenizer.decode(outputs[0][input_len:], skip_special_tokens=True)
print(translation)
Base model
beomi/open-llama-2-ko-7b