SetFitABSA models
Collection
4 items
•
Updated
This is a SetFit model trained on the SemEval 2014 Task 4 (Restaurants) dataset that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
This model was trained within the context of a larger system for ABSA, which looks like so:
Label | Examples |
---|---|
aspect |
|
no aspect |
|
Label | Accuracy |
---|---|
all | 0.8623 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect",
"tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 19.3576 | 45 |
Label | Training Sample Count |
---|---|
no aspect | 170 |
aspect | 255 |
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0027 | 1 | 0.2498 | - |
0.1355 | 50 | 0.2442 | - |
0.2710 | 100 | 0.2462 | 0.2496 |
0.4065 | 150 | 0.2282 | - |
0.5420 | 200 | 0.0752 | 0.1686 |
0.6775 | 250 | 0.0124 | - |
0.8130 | 300 | 0.0128 | 0.1884 |
0.9485 | 350 | 0.0062 | - |
1.0840 | 400 | 0.0012 | 0.183 |
1.2195 | 450 | 0.0009 | - |
1.3550 | 500 | 0.0008 | 0.2072 |
1.4905 | 550 | 0.0031 | - |
1.6260 | 600 | 0.0006 | 0.1716 |
1.7615 | 650 | 0.0005 | - |
1.8970 | 700 | 0.0005 | 0.1666 |
2.0325 | 750 | 0.0005 | - |
2.1680 | 800 | 0.0004 | 0.2086 |
2.3035 | 850 | 0.0005 | - |
2.4390 | 900 | 0.0004 | 0.183 |
2.5745 | 950 | 0.0004 | - |
2.7100 | 1000 | 0.0036 | 0.1725 |
2.8455 | 1050 | 0.0004 | - |
2.9810 | 1100 | 0.0003 | 0.1816 |
3.1165 | 1150 | 0.0004 | - |
3.2520 | 1200 | 0.0003 | 0.1802 |
Carbon emissions were measured using CodeCarbon.
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
Base model
BAAI/bge-small-en-v1.5