metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- 100K<n<1M
- loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
widget:
- source_sentence: >-
The strangely dressed guys, one wearing an orange wig, sunglasses with
peace signs, and a karate costume with an orannge belt, another wearing a
curly blue wig, heart shaped sunglasses, and a karate outfit painted with
leaves, and the third wearing pink underwear, a black afro, and giant
sunglasses.
sentences:
- >-
A blonde female is reaching into a golf hole while holding two golf
balls.
- There are people wearing outfits.
- The people are naked.
- source_sentence: A group of children playing and having a good time.
sentences:
- The kids are together.
- The children are reading books.
- People are pointing at a Middle-aged woman.
- source_sentence: >-
Three children dressed in winter clothes are walking through the woods
while pushing cargo along.
sentences:
- A woman is sitting.
- Three childre are dressed in summer clothes.
- Three children are dressed in winter clothes.
- source_sentence: A young child is enjoying the water and rock scenery with their dog.
sentences:
- The child and dog are enjoying some fresh air.
- The teenage boy is taking his cat for a walk beside the water.
- A lady in blue has birds around her.
- source_sentence: >-
Boca da Corrida Encumeada (moderate; 5 hours): views of Curral das Freiras
and the valley of Ribeiro do Poco.
sentences:
- >-
Boca da Corrida Encumeada is a moderate text that takes 5 hours to
complete.
- This chapter is in the advance category.
- I think it is something that we need.
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 118.81134392463773
energy_consumed: 0.30566177669432554
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 1.661
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: MPNet base trained on AllNLI triplets
results:
- task:
type: triplet
name: Triplet
dataset:
name: all nli dev
type: all-nli-dev
metrics:
- type: cosine_accuracy
value: 0.9003645200486027
name: Cosine Accuracy
- type: dot_accuracy
value: 0.09705346294046173
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.8968712029161604
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.8974787363304981
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9003645200486027
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: all nli test
type: all-nli-test
metrics:
- type: cosine_accuracy
value: 0.9149644424269935
name: Cosine Accuracy
- type: dot_accuracy
value: 0.08564079285822364
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.911484339536995
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9134513542139506
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9149644424269935
name: Max Accuracy
MPNet base trained on AllNLI triplets
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/mpnet-base-all-nli-triplet")
# Run inference
sentences = [
'Then he ran.',
'The people are running.',
'The man is on his bike.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9004 |
dot_accuracy | 0.0971 |
manhattan_accuracy | 0.8969 |
euclidean_accuracy | 0.8975 |
max_accuracy | 0.9004 |
Triplet
- Dataset:
all-nli-test
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.915 |
dot_accuracy | 0.0856 |
manhattan_accuracy | 0.9115 |
euclidean_accuracy | 0.9135 |
max_accuracy | 0.915 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 100,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 17.95 tokens
- max: 63 tokens
- min: 4 tokens
- mean: 9.78 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.35 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A woman drinks her coffee in a small cafe.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
---|---|---|---|---|---|
0 | 0 | - | - | 0.6832 | - |
0.016 | 100 | 2.6355 | 1.0725 | 0.7924 | - |
0.032 | 200 | 0.9206 | 0.8342 | 0.8080 | - |
0.048 | 300 | 1.2567 | 0.7855 | 0.8133 | - |
0.064 | 400 | 0.7949 | 0.8857 | 0.7974 | - |
0.08 | 500 | 0.7583 | 0.9487 | 0.7872 | - |
0.096 | 600 | 1.0022 | 1.1312 | 0.7848 | - |
0.112 | 700 | 0.8178 | 1.2282 | 0.7895 | - |
0.128 | 800 | 0.9997 | 1.5132 | 0.7488 | - |
0.144 | 900 | 1.1173 | 1.4605 | 0.7473 | - |
0.16 | 1000 | 1.0089 | 1.3794 | 0.7543 | - |
0.176 | 1100 | 1.0235 | 1.4188 | 0.7640 | - |
0.192 | 1200 | 1.0031 | 1.2465 | 0.7570 | - |
0.208 | 1300 | 0.8286 | 1.4176 | 0.7426 | - |
0.224 | 1400 | 0.8411 | 1.1914 | 0.7600 | - |
0.24 | 1500 | 0.8389 | 1.1719 | 0.7820 | - |
0.256 | 1600 | 0.7144 | 1.1167 | 0.7691 | - |
0.272 | 1700 | 0.881 | 1.0747 | 0.7902 | - |
0.288 | 1800 | 0.8657 | 1.1576 | 0.7966 | - |
0.304 | 1900 | 0.7323 | 1.0122 | 0.8322 | - |
0.32 | 2000 | 0.6578 | 1.1248 | 0.8273 | - |
0.336 | 2100 | 0.6037 | 1.1194 | 0.8269 | - |
0.352 | 2200 | 0.641 | 1.1410 | 0.8341 | - |
0.368 | 2300 | 0.7843 | 1.0600 | 0.8328 | - |
0.384 | 2400 | 0.8222 | 0.9988 | 0.8161 | - |
0.4 | 2500 | 0.7287 | 1.2026 | 0.8395 | - |
0.416 | 2600 | 0.6035 | 0.8802 | 0.8273 | - |
0.432 | 2700 | 0.8275 | 1.1631 | 0.8458 | - |
0.448 | 2800 | 0.8483 | 0.9218 | 0.8316 | - |
0.464 | 2900 | 0.8813 | 1.1187 | 0.8147 | - |
0.48 | 3000 | 0.7408 | 0.9582 | 0.8246 | - |
0.496 | 3100 | 0.7886 | 0.9364 | 0.8261 | - |
0.512 | 3200 | 0.6064 | 0.8338 | 0.8302 | - |
0.528 | 3300 | 0.6415 | 0.7895 | 0.8650 | - |
0.544 | 3400 | 0.5766 | 0.7525 | 0.8571 | - |
0.56 | 3500 | 0.6212 | 0.8605 | 0.8572 | - |
0.576 | 3600 | 0.5773 | 0.7460 | 0.8419 | - |
0.592 | 3700 | 0.6104 | 0.7480 | 0.8580 | - |
0.608 | 3800 | 0.5754 | 0.7215 | 0.8657 | - |
0.624 | 3900 | 0.5525 | 0.7900 | 0.8630 | - |
0.64 | 4000 | 0.7802 | 0.7443 | 0.8612 | - |
0.656 | 4100 | 0.9796 | 0.7756 | 0.8748 | - |
0.672 | 4200 | 0.9355 | 0.6917 | 0.8796 | - |
0.688 | 4300 | 0.7081 | 0.6442 | 0.8832 | - |
0.704 | 4400 | 0.6868 | 0.6395 | 0.8891 | - |
0.72 | 4500 | 0.5964 | 0.5983 | 0.8820 | - |
0.736 | 4600 | 0.6618 | 0.5754 | 0.8861 | - |
0.752 | 4700 | 0.6957 | 0.6177 | 0.8803 | - |
0.768 | 4800 | 0.6375 | 0.5577 | 0.8881 | - |
0.784 | 4900 | 0.5481 | 0.5496 | 0.8835 | - |
0.8 | 5000 | 0.6626 | 0.5728 | 0.8949 | - |
0.816 | 5100 | 0.5192 | 0.5329 | 0.8935 | - |
0.832 | 5200 | 0.5856 | 0.5188 | 0.8935 | - |
0.848 | 5300 | 0.5142 | 0.5252 | 0.8920 | - |
0.864 | 5400 | 0.6404 | 0.5641 | 0.8885 | - |
0.88 | 5500 | 0.5466 | 0.5209 | 0.8929 | - |
0.896 | 5600 | 0.575 | 0.5170 | 0.8961 | - |
0.912 | 5700 | 0.626 | 0.5095 | 0.9001 | - |
0.928 | 5800 | 0.5631 | 0.4817 | 0.8984 | - |
0.944 | 5900 | 0.7301 | 0.4996 | 0.8984 | - |
0.96 | 6000 | 0.7712 | 0.5160 | 0.9014 | - |
0.976 | 6100 | 0.6203 | 0.5000 | 0.9007 | - |
0.992 | 6200 | 0.0005 | 0.4996 | 0.9004 | - |
1.0 | 6250 | - | - | - | 0.9150 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.306 kWh
- Carbon Emitted: 0.119 kg of CO2
- Hours Used: 1.661 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}