SentenceTransformer based on distilbert/distilbert-base-uncased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased on the sentence-transformers/stsb dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("tomaarsen/distilbert-base-uncased-sts-matryoshka")
sentences = [
'A woman is dancing.',
'A woman is dancing in railway station.',
'The flag was moving in the air.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8648 |
spearman_cosine |
0.8748 |
pearson_manhattan |
0.8628 |
spearman_manhattan |
0.8658 |
pearson_euclidean |
0.8627 |
spearman_euclidean |
0.8658 |
pearson_dot |
0.7443 |
spearman_dot |
0.7514 |
pearson_max |
0.8648 |
spearman_max |
0.8748 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8628 |
spearman_cosine |
0.8741 |
pearson_manhattan |
0.862 |
spearman_manhattan |
0.8651 |
pearson_euclidean |
0.8623 |
spearman_euclidean |
0.8653 |
pearson_dot |
0.7464 |
spearman_dot |
0.7541 |
pearson_max |
0.8628 |
spearman_max |
0.8741 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8589 |
spearman_cosine |
0.8714 |
pearson_manhattan |
0.8591 |
spearman_manhattan |
0.8634 |
pearson_euclidean |
0.8592 |
spearman_euclidean |
0.8629 |
pearson_dot |
0.7186 |
spearman_dot |
0.7289 |
pearson_max |
0.8592 |
spearman_max |
0.8714 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8529 |
spearman_cosine |
0.8688 |
pearson_manhattan |
0.8509 |
spearman_manhattan |
0.8576 |
pearson_euclidean |
0.8532 |
spearman_euclidean |
0.8581 |
pearson_dot |
0.697 |
spearman_dot |
0.7059 |
pearson_max |
0.8532 |
spearman_max |
0.8688 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.834 |
spearman_cosine |
0.8587 |
pearson_manhattan |
0.8352 |
spearman_manhattan |
0.8446 |
pearson_euclidean |
0.8387 |
spearman_euclidean |
0.8461 |
pearson_dot |
0.6579 |
spearman_dot |
0.6713 |
pearson_max |
0.8387 |
spearman_max |
0.8587 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8337 |
spearman_cosine |
0.847 |
pearson_manhattan |
0.8485 |
spearman_manhattan |
0.847 |
pearson_euclidean |
0.8493 |
spearman_euclidean |
0.8475 |
pearson_dot |
0.6702 |
spearman_dot |
0.6526 |
pearson_max |
0.8493 |
spearman_max |
0.8475 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8326 |
spearman_cosine |
0.8468 |
pearson_manhattan |
0.8474 |
spearman_manhattan |
0.8463 |
pearson_euclidean |
0.8482 |
spearman_euclidean |
0.8466 |
pearson_dot |
0.6737 |
spearman_dot |
0.6572 |
pearson_max |
0.8482 |
spearman_max |
0.8468 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8226 |
spearman_cosine |
0.8403 |
pearson_manhattan |
0.8421 |
spearman_manhattan |
0.842 |
pearson_euclidean |
0.8435 |
spearman_euclidean |
0.8429 |
pearson_dot |
0.623 |
spearman_dot |
0.6062 |
pearson_max |
0.8435 |
spearman_max |
0.8429 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.815 |
spearman_cosine |
0.835 |
pearson_manhattan |
0.8352 |
spearman_manhattan |
0.8361 |
pearson_euclidean |
0.8376 |
spearman_euclidean |
0.8376 |
pearson_dot |
0.5958 |
spearman_dot |
0.5793 |
pearson_max |
0.8376 |
spearman_max |
0.8376 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7981 |
spearman_cosine |
0.827 |
pearson_manhattan |
0.8239 |
spearman_manhattan |
0.8289 |
pearson_euclidean |
0.8279 |
spearman_euclidean |
0.8315 |
pearson_dot |
0.5206 |
spearman_dot |
0.5067 |
pearson_max |
0.8279 |
spearman_max |
0.8315 |
Training Details
Training Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 5,749 training samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 6 tokens
- mean: 10.0 tokens
- max: 28 tokens
|
- min: 5 tokens
- mean: 9.95 tokens
- max: 25 tokens
|
- min: 0.0
- mean: 0.54
- max: 1.0
|
- Samples:
sentence1 |
sentence2 |
score |
A plane is taking off. |
An air plane is taking off. |
1.0 |
A man is playing a large flute. |
A man is playing a flute. |
0.76 |
A man is spreading shreded cheese on a pizza. |
A man is spreading shredded cheese on an uncooked pizza. |
0.76 |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 5 tokens
- mean: 15.1 tokens
- max: 45 tokens
|
- min: 6 tokens
- mean: 15.11 tokens
- max: 53 tokens
|
- min: 0.0
- mean: 0.47
- max: 1.0
|
- Samples:
sentence1 |
sentence2 |
score |
A man with a hard hat is dancing. |
A man wearing a hard hat is dancing. |
1.0 |
A young child is riding a horse. |
A child is riding a horse. |
0.95 |
A man is feeding a mouse to a snake. |
The man is feeding a mouse to the snake. |
1.0 |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "CoSENTLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
num_train_epochs
: 4
warmup_ratio
: 0.1
fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: False
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: None
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
loss |
sts-dev-128_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-512_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-dev-768_spearman_cosine |
sts-test-128_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-768_spearman_cosine |
0.2778 |
100 |
23.266 |
21.5517 |
0.8305 |
0.8355 |
0.8361 |
0.8157 |
0.8366 |
- |
- |
- |
- |
- |
0.5556 |
200 |
21.8736 |
21.6172 |
0.8327 |
0.8388 |
0.8446 |
0.8206 |
0.8453 |
- |
- |
- |
- |
- |
0.8333 |
300 |
21.6241 |
22.0565 |
0.8475 |
0.8538 |
0.8556 |
0.8345 |
0.8565 |
- |
- |
- |
- |
- |
1.1111 |
400 |
21.075 |
23.6719 |
0.8545 |
0.8581 |
0.8634 |
0.8435 |
0.8644 |
- |
- |
- |
- |
- |
1.3889 |
500 |
20.4122 |
22.5926 |
0.8592 |
0.8624 |
0.8650 |
0.8436 |
0.8656 |
- |
- |
- |
- |
- |
1.6667 |
600 |
20.6586 |
22.5999 |
0.8514 |
0.8563 |
0.8595 |
0.8389 |
0.8597 |
- |
- |
- |
- |
- |
1.9444 |
700 |
20.3262 |
22.2965 |
0.8582 |
0.8631 |
0.8666 |
0.8465 |
0.8667 |
- |
- |
- |
- |
- |
2.2222 |
800 |
19.7948 |
23.1844 |
0.8621 |
0.8659 |
0.8688 |
0.8499 |
0.8694 |
- |
- |
- |
- |
- |
2.5 |
900 |
19.2826 |
23.1351 |
0.8653 |
0.8687 |
0.8703 |
0.8547 |
0.8710 |
- |
- |
- |
- |
- |
2.7778 |
1000 |
19.1063 |
23.7141 |
0.8641 |
0.8672 |
0.8691 |
0.8531 |
0.8695 |
- |
- |
- |
- |
- |
3.0556 |
1100 |
19.4575 |
23.0055 |
0.8673 |
0.8702 |
0.8726 |
0.8574 |
0.8728 |
- |
- |
- |
- |
- |
3.3333 |
1200 |
18.0727 |
24.9288 |
0.8659 |
0.8692 |
0.8715 |
0.8565 |
0.8722 |
- |
- |
- |
- |
- |
3.6111 |
1300 |
18.1698 |
25.3114 |
0.8675 |
0.8701 |
0.8728 |
0.8576 |
0.8734 |
- |
- |
- |
- |
- |
3.8889 |
1400 |
18.2321 |
25.3777 |
0.8688 |
0.8714 |
0.8741 |
0.8587 |
0.8748 |
- |
- |
- |
- |
- |
4.0 |
1440 |
- |
- |
- |
- |
- |
- |
- |
0.8350 |
0.8403 |
0.8468 |
0.8270 |
0.8470 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.020 kWh
- Carbon Emitted: 0.008 kg of CO2
- Hours Used: 0.112 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}