metadata
base_model: google-bert/bert-base-uncased
datasets:
- sentence-transformers/gooaq
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3002496
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: how to change date format in ms project 2007?
sentences:
- >-
['Choose File > Options.', 'Select General.', 'Under Project view, pick
an option from the Date format list.']
- >-
Cats can be very affectionate and bonded with each other and still bond
well and show affection to their human. Getting two kittens from the
same litter, regardless of gender, can make it easier for them to
befriend each other and play—but any two kittens generally tend to get
on well after introductions.
- >-
Treat your permed hair like silk or another delicate fabric: washing it
once a week is enough to keep it clean and help maintain its beauty.
Wash your hair with warm water. Hot water can strip your hair of oils
that help keep it moisturized and looking lustrous. Hot water can also
ruin the curls.
- source_sentence: is the mother in vinegar good for you?
sentences:
- >-
Some people say the “mother,” the cloud of yeast and bacteria you might
see in a bottle of apple cider vinegar, is what makes it healthy. These
things are probiotic, meaning they might give your digestive system a
boost, but there isn't enough research to back up the other claims.
- >-
It is normal for vaginal discharge to increase in amount and become
“stringy” (like egg whites) during the middle of your menstrual cycle
when you're ovulating. If you find that your normal discharge is
annoying, you can wear panty liners/shields on your underwear.
- >-
State law protects cypress trees along Florida's waterways, but it has
been up to the courts to enforce the regulations. ... Landowners can cut
down cypress trees on their land, but trees below the high-water mark
are considered state property and are protected.
- source_sentence: if you're blocked on whatsapp can you see last seen?
sentences:
- >-
Jaguars aren't going to London this year, releases new plan for season
tickets. The Jaguars will no longer be playing two games in London, and
will instead play both games at TIAA Bank Field.
- >-
Typically, most drugs are absorbed within 20-30 minutes after given by
mouth. Vomiting after this amount of time is not related to the drug in
the stomach as the vast majority, if not all, has already been absorbed.
- >-
You can no longer see a contact's last seen or online in the chat
window. Learn more here. You do not see updates to a contact's profile
photo. Any messages sent to a contact who has blocked you will always
show one check mark (message sent), and never show a second check mark
(message delivered).
- source_sentence: how many enchantments can you put on armor?
sentences:
- >-
4 Answers. You can in theory add every enchantment that is compatible
with a tool/weapon/armor onto the same item. The bow can have these 7
enchantments, though mending and infinity are mutually exclusive.
- >-
The sleeve length will make or break a jacket. If too long, it will make
the jacket look too big, and if too short, like you have outgrown your
jacket. ... This is when you need an experienced tailor, who will be
able to shorten the sleeves from the shoulders, so the details on the
cuffs are not disturbed.
- >-
Grace period of 60 days granted after the expiration of license for
purpose of renewal, and license is valid during this period. Renewal of
license may occur from 60 days (effective August 1, 2016, 180 days)
prior to expiration to 3 years after date; afterwards, applicant
required to take and pass examination.
- source_sentence: what is the best drugstore shampoo for volume?
sentences:
- >-
['#8. ... ', '#7. ... ', '#6. Hask Biotin Boost Shampoo. ... ', '#5.
Pantene Pro-V Sheer Volume Shampoo. ... ', '#4. John Frieda Luxurious
Volume Touchably Full Shampoo. ... ', '#3. Acure Vivacious Volume
Peppermint Shampoo. ... ', '#2. OGX Thick & Full Biotin & Collagen
Shampoo. ... ', "#1. L'Oréal Paris EverPure Sulfate Free Volume
Shampoo."]
- >-
Genes can't control an organism on their own; rather, they must interact
with and respond to the organism's environment. Some genes are
constitutive, or always "on," regardless of environmental conditions.
- >-
In electricity, the phase refers to the distribution of a load. What is
the difference between single-phase and three-phase power supplies?
Single-phase power is a two-wire alternating current (ac) power circuit.
... Three-phase power is a three-wire ac power circuit with each phase
ac signal 120 electrical degrees apart.
co2_eq_emissions:
emissions: 523.8395173647017
energy_consumed: 1.3476635503925931
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 3.544
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: BERT base uncased trained on GooAQ triplets
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: gooaq dev
type: gooaq-dev
metrics:
- type: cosine_accuracy@1
value: 0.7001
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8712
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9219
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9629
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7001
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18438000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09629000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7001
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8712
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9219
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9629
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8358567622290791
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7945682142857085
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.796615366916047
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.6709
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8558
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.9096
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9567
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6709
name: Dot Precision@1
- type: dot_precision@3
value: 0.28526666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.18192000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.09567
name: Dot Precision@10
- type: dot_recall@1
value: 0.6709
name: Dot Recall@1
- type: dot_recall@3
value: 0.8558
name: Dot Recall@3
- type: dot_recall@5
value: 0.9096
name: Dot Recall@5
- type: dot_recall@10
value: 0.9567
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.8177950307933399
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.772776468253962
name: Dot Mrr@10
- type: dot_map@100
value: 0.7751231358698718
name: Dot Map@100
BERT base uncased trained on GooAQ triplets
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased on the sentence-transformers/gooaq dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/bert-base-uncased-gooaq")
# Run inference
sentences = [
'what is the best drugstore shampoo for volume?',
'[\'#8. ... \', \'#7. ... \', \'#6. Hask Biotin Boost Shampoo. ... \', \'#5. Pantene Pro-V Sheer Volume Shampoo. ... \', \'#4. John Frieda Luxurious Volume Touchably Full Shampoo. ... \', \'#3. Acure Vivacious Volume Peppermint Shampoo. ... \', \'#2. OGX Thick & Full Biotin & Collagen Shampoo. ... \', "#1. L\'Oréal Paris EverPure Sulfate Free Volume Shampoo."]',
'In electricity, the phase refers to the distribution of a load. What is the difference between single-phase and three-phase power supplies? Single-phase power is a two-wire alternating current (ac) power circuit. ... Three-phase power is a three-wire ac power circuit with each phase ac signal 120 electrical degrees apart.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
gooaq-dev
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7001 |
cosine_accuracy@3 | 0.8712 |
cosine_accuracy@5 | 0.9219 |
cosine_accuracy@10 | 0.9629 |
cosine_precision@1 | 0.7001 |
cosine_precision@3 | 0.2904 |
cosine_precision@5 | 0.1844 |
cosine_precision@10 | 0.0963 |
cosine_recall@1 | 0.7001 |
cosine_recall@3 | 0.8712 |
cosine_recall@5 | 0.9219 |
cosine_recall@10 | 0.9629 |
cosine_ndcg@10 | 0.8359 |
cosine_mrr@10 | 0.7946 |
cosine_map@100 | 0.7966 |
dot_accuracy@1 | 0.6709 |
dot_accuracy@3 | 0.8558 |
dot_accuracy@5 | 0.9096 |
dot_accuracy@10 | 0.9567 |
dot_precision@1 | 0.6709 |
dot_precision@3 | 0.2853 |
dot_precision@5 | 0.1819 |
dot_precision@10 | 0.0957 |
dot_recall@1 | 0.6709 |
dot_recall@3 | 0.8558 |
dot_recall@5 | 0.9096 |
dot_recall@10 | 0.9567 |
dot_ndcg@10 | 0.8178 |
dot_mrr@10 | 0.7728 |
dot_map@100 | 0.7751 |
Training Details
Training Dataset
sentence-transformers/gooaq
- Dataset: sentence-transformers/gooaq at b089f72
- Size: 3,002,496 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.95 tokens
- max: 24 tokens
- min: 17 tokens
- mean: 60.83 tokens
- max: 130 tokens
- Samples:
question answer what are the differences between internet and web?
The Internet is a global network of networks while the Web, also referred formally as World Wide Web (www) is collection of information which is accessed via the Internet. Another way to look at this difference is; the Internet is infrastructure while the Web is service on top of that infrastructure.
who is the most important person in a first aid situation?
Subscribe to New First Aid For Free The main principle of incident management is that you are the most important person and your safety comes first! Your first actions when coming across the scene of an incident should be: Check for any dangers to yourself or bystanders. Manage any dangers found (if safe to do so)
why is jibjab not working?
Usually disabling your ad blockers for JibJab will resolve this issue. If you're still having issues loading the card after your ad blockers are disabled, you can try clearing your cache/cookies or updating and restarting your browser. As a last resort, you can try opening JibJab from a different browser.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
sentence-transformers/gooaq
- Dataset: sentence-transformers/gooaq at b089f72
- Size: 10,000 evaluation samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 12.01 tokens
- max: 34 tokens
- min: 13 tokens
- mean: 59.81 tokens
- max: 145 tokens
- Samples:
question answer what are some common attributes/characteristics between animal and human?
['Culture.', 'Emotions.', 'Language.', 'Humour.', 'Tool Use.', 'Memory.', 'Self-Awareness.', 'Intelligence.']
is folic acid the same as vitamin b?
Vitamin B9, also called folate or folic acid, is one of 8 B vitamins. All B vitamins help the body convert food (carbohydrates) into fuel (glucose), which is used to produce energy. These B vitamins, often referred to as B-complex vitamins, also help the body use fats and protein.
are bendy buses still in london?
Bendy bus makes final journey for Transport for London. The last of London's bendy buses was taken off the roads on Friday night. ... The final route to be operated with bendy buses has been the 207 between Hayes and White City, and the last of the long vehicles was to run late on Friday.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | gooaq-dev_cosine_map@100 |
---|---|---|---|---|
0 | 0 | - | - | 0.2018 |
0.0000 | 1 | 2.6207 | - | - |
0.0213 | 500 | 0.9092 | - | - |
0.0426 | 1000 | 0.2051 | - | - |
0.0639 | 1500 | 0.1354 | - | - |
0.0853 | 2000 | 0.1089 | 0.0719 | 0.7124 |
0.1066 | 2500 | 0.0916 | - | - |
0.1279 | 3000 | 0.0812 | - | - |
0.1492 | 3500 | 0.0716 | - | - |
0.1705 | 4000 | 0.0658 | 0.0517 | 0.7432 |
0.1918 | 4500 | 0.0623 | - | - |
0.2132 | 5000 | 0.0596 | - | - |
0.2345 | 5500 | 0.0554 | - | - |
0.2558 | 6000 | 0.0504 | 0.0401 | 0.7580 |
0.2771 | 6500 | 0.0498 | - | - |
0.2984 | 7000 | 0.0483 | - | - |
0.3197 | 7500 | 0.0487 | - | - |
0.3410 | 8000 | 0.0458 | 0.0359 | 0.7652 |
0.3624 | 8500 | 0.0435 | - | - |
0.3837 | 9000 | 0.0421 | - | - |
0.4050 | 9500 | 0.0421 | - | - |
0.4263 | 10000 | 0.0405 | 0.0329 | 0.7738 |
0.4476 | 10500 | 0.0392 | - | - |
0.4689 | 11000 | 0.0388 | - | - |
0.4903 | 11500 | 0.0388 | - | - |
0.5116 | 12000 | 0.0361 | 0.0290 | 0.7810 |
0.5329 | 12500 | 0.0362 | - | - |
0.5542 | 13000 | 0.0356 | - | - |
0.5755 | 13500 | 0.0352 | - | - |
0.5968 | 14000 | 0.0349 | 0.0267 | 0.7866 |
0.6182 | 14500 | 0.0334 | - | - |
0.6395 | 15000 | 0.0323 | - | - |
0.6608 | 15500 | 0.0325 | - | - |
0.6821 | 16000 | 0.0316 | 0.0256 | 0.7879 |
0.7034 | 16500 | 0.0313 | - | - |
0.7247 | 17000 | 0.0306 | - | - |
0.7460 | 17500 | 0.0328 | - | - |
0.7674 | 18000 | 0.0303 | 0.0238 | 0.7928 |
0.7887 | 18500 | 0.0301 | - | - |
0.8100 | 19000 | 0.0291 | - | - |
0.8313 | 19500 | 0.0286 | - | - |
0.8526 | 20000 | 0.0295 | 0.0218 | 0.7952 |
0.8739 | 20500 | 0.0288 | - | - |
0.8953 | 21000 | 0.0277 | - | - |
0.9166 | 21500 | 0.0266 | - | - |
0.9379 | 22000 | 0.0289 | 0.0218 | 0.7971 |
0.9592 | 22500 | 0.0286 | - | - |
0.9805 | 23000 | 0.0275 | - | - |
1.0 | 23457 | - | - | 0.7966 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 1.348 kWh
- Carbon Emitted: 0.524 kg of CO2
- Hours Used: 3.544 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.1.0.dev0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}