SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
This is a sentence-transformers model finetuned from nreimers/TinyBERT_L-4_H-312_v2 on the sentence-transformers/wikipedia-en-sentences dataset. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nreimers/TinyBERT_L-4_H-312_v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 312 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2")
# Run inference
sentences = [
'A person standing',
'There is a person standing outside',
'A young man plays a racing video game.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8078 |
spearman_cosine | 0.8209 |
pearson_manhattan | 0.8226 |
spearman_manhattan | 0.8203 |
pearson_euclidean | 0.8216 |
spearman_euclidean | 0.8202 |
pearson_dot | 0.7901 |
spearman_dot | 0.7914 |
pearson_max | 0.8226 |
spearman_max | 0.8209 |
Knowledge Distillation
- Evaluated with
MSEEvaluator
Metric | Value |
---|---|
negative_mse | -50.1254 |
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7517 |
spearman_cosine | 0.7558 |
pearson_manhattan | 0.7763 |
spearman_manhattan | 0.7597 |
pearson_euclidean | 0.7706 |
spearman_euclidean | 0.7554 |
pearson_dot | 0.7307 |
spearman_dot | 0.7098 |
pearson_max | 0.7763 |
spearman_max | 0.7597 |
Training Details
Training Dataset
sentence-transformers/wikipedia-en-sentences
- Dataset: sentence-transformers/wikipedia-en-sentences at 4a0972d
- Size: 200,000 training samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 4 tokens
- mean: 12.24 tokens
- max: 52 tokens
- size: 312 elements
- Samples:
sentence label A person on a horse jumps over a broken down airplane.
[-0.09614687412977219, 0.6815224885940552, 2.702199935913086, 1.8371250629425049, -1.2949433326721191, ...]
Children smiling and waving at camera
[2.769360303878784, 3.074428081512451, -7.291755676269531, 5.248741149902344, 2.85081148147583, ...]
A boy is jumping on skateboard in the middle of a red bridge.
[-3.0669667720794678, 2.9899890422821045, -1.253997802734375, 6.15218448638916, 0.5838223099708557, ...]
- Loss:
MSELoss
Evaluation Dataset
sentence-transformers/wikipedia-en-sentences
- Dataset: sentence-transformers/wikipedia-en-sentences at 4a0972d
- Size: 10,000 evaluation samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 5 tokens
- mean: 13.23 tokens
- max: 57 tokens
- size: 312 elements
- Samples:
sentence label Two women are embracing while holding to go packages.
[6.200135707855225, -2.0865142345428467, -2.1313390731811523, -1.9593913555145264, -1.081985592842102, ...]
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
[1.7725015878677368, 0.6873414516448975, -2.5191268920898438, 3.866339683532715, 2.853647470474243, ...]
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
[-3.317653179168701, 3.0908589363098145, 0.1683920919895172, -2.4405274391174316, -3.1366524696350098, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 0.0001num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Falseper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 0.0001weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Nonedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|---|
0.032 | 100 | 0.8847 | - | - | - | - |
0.064 | 200 | 0.8136 | - | - | - | - |
0.096 | 300 | 0.697 | - | - | - | - |
0.128 | 400 | 0.6128 | - | - | - | - |
0.16 | 500 | 0.5634 | 0.6324 | -63.2356 | 0.7564 | - |
0.192 | 600 | 0.5294 | - | - | - | - |
0.224 | 700 | 0.5035 | - | - | - | - |
0.256 | 800 | 0.4861 | - | - | - | - |
0.288 | 900 | 0.4668 | - | - | - | - |
0.32 | 1000 | 0.4515 | 0.5673 | -56.7263 | 0.7965 | - |
0.352 | 1100 | 0.4376 | - | - | - | - |
0.384 | 1200 | 0.4274 | - | - | - | - |
0.416 | 1300 | 0.4178 | - | - | - | - |
0.448 | 1400 | 0.4098 | - | - | - | - |
0.48 | 1500 | 0.4053 | 0.5354 | -53.5381 | 0.8091 | - |
0.512 | 1600 | 0.3934 | - | - | - | - |
0.544 | 1700 | 0.391 | - | - | - | - |
0.576 | 1800 | 0.3848 | - | - | - | - |
0.608 | 1900 | 0.3785 | - | - | - | - |
0.64 | 2000 | 0.3737 | 0.5168 | -51.6829 | 0.8159 | - |
0.672 | 2100 | 0.3716 | - | - | - | - |
0.704 | 2200 | 0.3695 | - | - | - | - |
0.736 | 2300 | 0.3666 | - | - | - | - |
0.768 | 2400 | 0.3616 | - | - | - | - |
0.8 | 2500 | 0.358 | 0.5067 | -50.6687 | 0.8189 | - |
0.832 | 2600 | 0.3551 | - | - | - | - |
0.864 | 2700 | 0.3544 | - | - | - | - |
0.896 | 2800 | 0.3524 | - | - | - | - |
0.928 | 2900 | 0.3524 | - | - | - | - |
0.96 | 3000 | 0.3529 | 0.5013 | -50.1254 | 0.8209 | - |
0.992 | 3100 | 0.3496 | - | - | - | - |
1.0 | 3125 | - | - | - | - | 0.7558 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.009 kWh
- Carbon Emitted: 0.003 kg of CO2
- Hours Used: 0.054 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2
Base model
nreimers/TinyBERT_L-4_H-312_v2Evaluation results
- Pearson Cosine on sts devself-reported0.808
- Spearman Cosine on sts devself-reported0.821
- Pearson Manhattan on sts devself-reported0.823
- Spearman Manhattan on sts devself-reported0.820
- Pearson Euclidean on sts devself-reported0.822
- Spearman Euclidean on sts devself-reported0.820
- Pearson Dot on sts devself-reported0.790
- Spearman Dot on sts devself-reported0.791
- Pearson Max on sts devself-reported0.823
- Spearman Max on sts devself-reported0.821