metadata
language:
- en
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
model-index:
- name: bert-base-multilingual-cased-sst2-10
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tmnam20/VieGLUE/SST2
type: tmnam20/VieGLUE
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.8841743119266054
bert-base-multilingual-cased-sst2-10
This model is a fine-tuned version of bert-base-multilingual-cased on the tmnam20/VieGLUE/SST2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4234
- Accuracy: 0.8842
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4066 | 0.24 | 500 | 0.3869 | 0.8291 |
0.3414 | 0.48 | 1000 | 0.3499 | 0.8486 |
0.3133 | 0.71 | 1500 | 0.3743 | 0.8509 |
0.2797 | 0.95 | 2000 | 0.4119 | 0.8475 |
0.236 | 1.19 | 2500 | 0.3891 | 0.8670 |
0.2202 | 1.43 | 3000 | 0.3640 | 0.8739 |
0.1889 | 1.66 | 3500 | 0.3829 | 0.8681 |
0.1847 | 1.9 | 4000 | 0.3687 | 0.8796 |
0.1288 | 2.14 | 4500 | 0.4524 | 0.8807 |
0.1478 | 2.38 | 5000 | 0.4259 | 0.875 |
0.1761 | 2.61 | 5500 | 0.4060 | 0.8819 |
0.1487 | 2.85 | 6000 | 0.4408 | 0.8807 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.2.0.dev20231203+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0