wav2vec2_transformer_phonome
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2714
- Wer: 0.5886
- Cer: 0.0707
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- training_steps: 26000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.0354 | 1.49 | 1000 | 1.5671 | 0.9984 | 0.5492 |
1.3073 | 2.98 | 2000 | 0.5049 | 0.7604 | 0.1035 |
1.1054 | 4.46 | 3000 | 0.3268 | 0.6848 | 0.0865 |
1.066 | 5.95 | 4000 | 0.3185 | 0.6734 | 0.0814 |
1.0249 | 7.44 | 5000 | 0.3240 | 0.6483 | 0.0796 |
0.9736 | 8.93 | 6000 | 0.3017 | 0.6206 | 0.0778 |
0.9367 | 10.42 | 7000 | 0.2813 | 0.6279 | 0.0752 |
0.8958 | 11.9 | 8000 | 0.2778 | 0.6117 | 0.0763 |
0.8778 | 13.39 | 9000 | 0.2772 | 0.6393 | 0.0765 |
0.9016 | 14.88 | 10000 | 0.2768 | 0.6271 | 0.0751 |
0.8208 | 16.37 | 11000 | 0.3309 | 0.6182 | 0.0759 |
0.8297 | 17.86 | 12000 | 0.2814 | 0.6011 | 0.0721 |
0.7533 | 19.35 | 13000 | 0.2674 | 0.6068 | 0.0733 |
0.7959 | 20.83 | 14000 | 0.2821 | 0.6206 | 0.0736 |
0.7577 | 22.32 | 15000 | 0.3250 | 0.6206 | 0.0735 |
0.7456 | 23.81 | 16000 | 0.3078 | 0.5979 | 0.0742 |
0.7387 | 25.3 | 17000 | 0.3166 | 0.5930 | 0.0720 |
0.7364 | 26.79 | 18000 | 0.3052 | 0.6141 | 0.0739 |
0.7136 | 28.27 | 19000 | 0.3026 | 0.6060 | 0.0731 |
0.7036 | 29.76 | 20000 | 0.2726 | 0.5946 | 0.0720 |
0.6939 | 31.25 | 21000 | 0.2714 | 0.5930 | 0.0720 |
0.6985 | 32.74 | 22000 | 0.2722 | 0.5963 | 0.0713 |
0.677 | 34.23 | 23000 | 0.2799 | 0.6011 | 0.0718 |
0.7176 | 35.71 | 24000 | 0.2769 | 0.6052 | 0.0710 |
0.6649 | 37.2 | 25000 | 0.2751 | 0.5987 | 0.0716 |
0.642 | 38.69 | 26000 | 0.2719 | 0.5963 | 0.0704 |
Framework versions
- Transformers 4.17.0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 0